The CRH-Transgenic Cushingoid Mouse Is a Model of Glucocorticoid-Induced Osteoporosis

Glucocorticoids (GCs) have unparalleled anti-inflammatory and immunosuppressive properties, which accounts for their widespread prescription and use. Unfortunately, a limitation to GC therapy is a wide range of negative side effects including Cushing's syndrome, a disease characterized by metabolic abnormalities including muscle wasting and osteoporosis. GC-induced osteoporosis occurs in 30% to 50% of patients on GC therapy and thus, represents an important area of study.

Comparison of contact radiographed and stained histological sections for osseointegration analysis of dental implants – an in vivo study

Histology is still regarded as the gold-standard to determine bone implant contact (BIC) as a parameter representing implant stability. As the further processing of cut slices for contact radiography (CR) to stained and polished histological sections is time consuming and error prone, our aim was to assess agreement between CR and Giemsa-Eosin (GE) stained sections with regard to dental implants.

Estrogen receptor alpha mediates mandibular condylar cartilage growth in male mice

In the appendicular skeleton, estrogen via ERα signalling has been shown to mediate endochondral growth plate fusion in both males and females. However, the role of ERα in mediating growth of the mandibular condylar cartilage is unknown. Thus, this study focuses on the characterization of the mandibular condylar cartilage phenotype in young and adult male ERαKO mice.

Whole grape alleviates inflammatory arthritis through inhibition of tumor necrosis factor

The anti-rheumatic efficacy of grape powder (GP) diet was evaluated in transgenic mice (TG) overexpressing human tumor necrosis factor (TNF), a model for rheumatoid arthritis (RA). After 4-weeks, TG mice fed on 10% of GP showed improvement with epiphyseal bone mass (p = 0.07) compared to TG fed on a regular diet. TG mice that received 5 or 10% of GP exhibited a significant (p < 0.05) decrease in resorption-associated osteoclasts in paw and knee joints.

Microgroove and Collagen-poly(ε-caprolactone) Nanofiber Mesh Coating Improves the Mechanical Stability and Osseointegration of Titanium Implants

The effect of depositing a collagen (CG)-poly-ε-caprolactone (PCL) nanofiber mesh (NFM) at the microgrooves of titanium (Ti) on the mechanical stability and osseointegration of the implant with bone was investigated using a rabbit model. Three groups of Ti samples were produced: control Ti samples where there were no microgrooves or CG-PCL NFM, groove Ti samples where microgrooves were machined on the circumference of Ti, and groove-NFM Ti samples where CG-PCL NFM was deposited on the machined microgrooves.

Intermittent Parathyroid Hormone After Prolonged Alendronate Treatment Induces Substantial New Bone Formation and Increases Bone Tissue Heterogeneity in Ovariectomized Rats

Postmenopausal osteoporosis is often treated with bisphosphonates (eg, alendronate, [ALN]), but oversuppression of bone turnover by long-term bisphosphonate treatment may decrease bone tissue heterogeneity. Thus, alternate treatment strategies after long-term bisphosphonates are of great clinical interest. The objective of the current study was to determine the effect of intermittent parathyroid hormone (PTH) following 12 weeks of ALN (a bisphosphonate) treatment in 6-month-old, ovariectomized (OVX) rats on bone microarchitecture, bone remodeling dynamics, and bone mechanical properties at multiple length scales.