cartilage

Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation

AUTHORS

Cuicui Wang, Jun Ying, Xiangfeng Niu, Xiaofei Li, Gary J. Patti, Jie Shen & Regis J. O’Keefe

ABSTRACT

Glucose metabolism is fundamental for the functions of all tissues, including cartilage. Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development, little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis. We show here that genetic deletion of the glucose transporter Glut1 in postnatal cartilage impairs cell proliferation and matrix production in growth plate (GPs) but paradoxically increases cartilage remnants in the metaphysis, resulting in shortening of long bones. On the other hand, articular cartilage (AC) with Glut1 deficiency presents diminished cellularity and loss of proteoglycans, which ultimately progress to cartilage fibrosis. Moreover, predisposition to Glut1 deficiency severely exacerbates injury-induced osteoarthritis. Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions, both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability. However, uncontrolled glutamine flux causes collagen overmodification, thus affecting extracellular matrix remodeling in both cartilage compartments. These results uncover the pivotal and distinct roles of Glut1-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism.

Spaceflight and hind limb unloading induces an arthritic phenotype in knee articular cartilage and menisci of rodents

AUTHORS

Andy T. Kwok, Nequesha S. Mohamed, Johannes F. Plate, Raghunatha R. Yammani, Samuel Rosas, Ted A. Bateman, Eric Livingston, Joseph E. Moore, Bethany A. Kerr, Jingyun Lee, Cristina M. Furdui, Li Tan, Mary L. Bouxsein, Virginia L. Ferguson, Louis S. Stodieck, David C. Zawieja, Michael D. Delp, Xiao W. Mao & Jeffrey S. Willey

ABSTRACT

Reduced knee weight-bearing from prescription or sedentary lifestyles are associated with cartilage degradation; effects on the meniscus are unclear. Rodents exposed to spaceflight or hind limb unloading (HLU) represent unique opportunities to evaluate this question. This study evaluated arthritic changes in the medial knee compartment that bears the highest loads across the knee after actual and simulated spaceflight, and recovery with subsequent full weight-bearing. Cartilage and meniscal degradation in mice were measured via microCT, histology, and proteomics and/or biochemically after: (1) ~ 35 days on the International Space Station (ISS); (2) 13-days aboard the Space Shuttle Atlantis; or (3) 30 days of HLU, followed by a 49-day weight-bearing readaptation with/without exercise. Cartilage degradation post-ISS and HLU occurred at similar spatial locations, the tibial-femoral cartilage-cartilage contact point, with meniscal volume decline. Cartilage and meniscal glycosaminoglycan content were decreased in unloaded mice, with elevated catabolic enzymes (e.g., matrix metalloproteinases), and elevated oxidative stress and catabolic molecular pathway responses in menisci. After the 13-day Shuttle flight, meniscal degradation was observed. During readaptation, recovery of cartilage volume and thickness occurred with exercise. Reduced weight-bearing from either spaceflight or HLU induced an arthritic phenotype in cartilage and menisci, and exercise promoted recovery.

Estrogen receptor alpha mediates mandibular condylar cartilage growth in male mice

In the appendicular skeleton, estrogen via ERα signalling has been shown to mediate endochondral growth plate fusion in both males and females. However, the role of ERα in mediating growth of the mandibular condylar cartilage is unknown. Thus, this study focuses on the characterization of the mandibular condylar cartilage phenotype in young and adult male ERαKO mice.

Whole grape alleviates inflammatory arthritis through inhibition of tumor necrosis factor

The anti-rheumatic efficacy of grape powder (GP) diet was evaluated in transgenic mice (TG) overexpressing human tumor necrosis factor (TNF), a model for rheumatoid arthritis (RA). After 4-weeks, TG mice fed on 10% of GP showed improvement with epiphyseal bone mass (p = 0.07) compared to TG fed on a regular diet. TG mice that received 5 or 10% of GP exhibited a significant (p < 0.05) decrease in resorption-associated osteoclasts in paw and knee joints.

EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation

Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis.

Treatment of Articular Cartilage Defects With Microfracture and Autologous Matrix-Induced Chondrogenesis Leads to Extensive Subchondral Bone Cyst Formation in a Sheep Model

Microfracture and the autologous matrix-induced chondrogenesis (AMIC) technique are popular for the treatment of articular cartilage defects. However, breaching of the subchondral bone plate could compromise the subchondral bone structure.