OVX

Bisphosphonate-enoxacin inhibit osteoclast formation and function by abrogating RANKL-induced JNK signalling pathways during osteoporosis treatment

AUTHORS

Qiang Xu, Ping Zhan, Xiaofeng Li, Fengbo Mo, Huaen Xu, Yuan Liu, Qi Lai, Bin Zhang,Min Dai, Xuqiang Liu

ABSTRACT

Osteoporosis is an age-related disease characterized by low mineral density, compromised bone strength and increased risk of fragility fracture. Most agents for treating osteoporosis focus primarily on anti-resorption by inhibiting osteoclast activity. Bisphosphonate (BP) is a potent anti-resorptive agent that has been used clinically for decades and is proven to be effective. However, BP has a variety of side effects and is far from being an ideal anti-osteoporosis agent. BP selectively binds to calcium crystals, which are subsequently taken up or released by osteoclasts. Based on the action of BP, we previously demonstrated the inhibitory effect of a novel bone-targeting BP derivative, bisphosphonate-enoxacin (BE). In the current study, we used bone marrow-derived osteoclast cultures to further assess the inhibitory effect of BE on osteoclastogenesis and employed reverse transcription PCR and real-time PCR to examine expression of osteoclast-specific genes. Additionally, we used bone resorption and F-actin immunofluorescence assays to evaluate the effect of BE on osteoclast function and investigated the potential mechanisms affecting osteoclast differentiation and function in vitro. Furthermore, an ovariectomized (OVX) rat model was established to evaluate the therapeutic effects of BE on preventing bone loss. Results showed that BE exerted potent inhibitory effects on osteoclast formation and bone resorption by specifically abrogating RANKL-induced JNK signalling, and that it preserved OVX rat bone mass in vivo without any notable side effects. Collectively, these results indicated that the BP derivative BE may have significant potential as a treatment for osteoporosis and other osteolytic diseases.

Morin attenuates osteoclast formation and function by suppressing the NF-κB, MAPK and calcium signalling pathways

AUTHORS

Yifeng Shi, Lin Ye, Shiwei Shen, Tianchen Qian, Youjin Pan, Yuhan Jiang, Jinghao Lin, Chen Liu, Yaosen Wu, Xiangyang Wang, Jiake Xu, Haiming Jin

ABSTRACT

Morin is a natural compound isolated from moraceae family members and has been reported to possess a range of pharmacological activities. However, the effects of morin on bone-associated disorders and the potential mechanism remain unknown. In this study, we investigated the anti-osteoclastogenic effect of morin in vitro and the potential therapeutic effects on ovariectomy (OVX)-induced osteoporosis in vivo. In vitro, by using a bone marrow macrophage-derived osteoclast culture system, we determined that morin attenuated receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation via the inhibition of the mitogen-activated protein kinase (MAPK), NF-κB and calcium pathways. In addition, the subsequent expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos was significantly suppressed by morin. In addition, NFATc1 downregulation led to the reduced expression of osteoclastogenesis-related marker genes, such as V-ATPase-d2 and Integrin β3. In vivo, results provided that morin could effectively attenuate OVX-induced bone loss in C57BL/6 mice. In conclusion, our results demonstrated that morin suppressed RANKL-induced osteoclastogenesis via the NF-κB, MAPK and calcium pathways, in addition, its function of preventing OVX-induced bone loss in vivo, which suggested that morin may be a potential therapeutic agent for postmenopausal osteoporosis treatment.

Globular adiponectin reverses osteo-sarcopenia and altered body composition in ovariectomized rats

Adiponectin regulates various metabolic processes including glucose flux, lipid breakdown and insulin response. We recently reported that adiponectin receptor1 (adipoR1) activation by a small molecule reverses osteopenia in leptin receptor deficient db/db (diabetic) mice. However, the role of adiponectin in bone metabolism under the setting of post-menopausal (estrogen-deficiency) osteopenia and associated metabolic derangements has not been studied.

Protective effect of low-dose risedronate against osteocyte apoptosis and bone loss in ovariectomized rats

Osteocyte apoptosis is the first reaction to estrogen depletion, thereby stimulating osteoclastic bone resorption resulting in bone loss. We investigated the effects of two different risedronate (RIS) doses (high and low) on osteocyte apoptosis, osteoclast activity and bone loss in ovariectomized rats.

Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism

Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity.

Cyanidin Chloride Inhibits Ovariectomy-Induced Osteoporosis by Suppressing RANKL-mediated Osteoclastogenesis and Associated Signaling Pathways

Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk and trap.