glucocorticoids

Bone-targeting delivery of platelet lysate exosomes ameliorates glucocorticoid-induced osteoporosis by enhancing bone-vessel coupling

AUTHORS

Gang Zheng, Hai-Wei Ma, Guang-Heng Xiang, Gao-Lu He, Han-Chen Cai, Zi-Han Dai, Yan-Lin Chen, Yan Lin, Hua-Zi Xu, Wen-Fei Ni, Cong Xu, Hai-Xiao Liu & Xiang-Yang Wang

ABSTRACT

Background

Glucocorticoids (GCs) overuse is associated with decreased bone mass and osseous vasculature destruction, leading to severe osteoporosis. Platelet lysates (PL) as a pool of growth factors (GFs) were widely used in local bone repair by its potent pro-regeneration and pro-angiogenesis. However, it is still seldom applied for treating systemic osteopathia due to the lack of a suitable delivery strategy. The non-targeted distribution of GFs might cause tumorigenesis in other organs.

Results

In this study, PL-derived exosomes (PL-exo) were isolated to enrich the platelet-derived GFs, followed by conjugating with alendronate (ALN) grafted PEGylated phospholipid (DSPE-PEG-ALN) to establish a bone-targeting PL-exo (PL-exo-ALN). The in vitro hydroxyapatite binding affinity and in vivo bone targeting aggregation of PL-exo were significantly enhanced after ALN modification. Besides directly modulating the osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs), respectively, PL-exo-ALN also facilitate their coupling under GCs’ stimulation. Additionally, intravenous injection of PL-exo-ALN could successfully rescue GCs induced osteoporosis (GIOP) in vivo.

Conclusions

PL-exo-ALN may be utilized as a novel nanoplatform for precise infusion of GFs to bone sites and exerts promising therapeutic potential for GIOP.

Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes

AUTHORS

Molly H. Kent, Joanna C. Jacob, Gabby Bowen, Janhavi Bhalerao, Stephanie Desinor, Dylan Vavra, Danielle Leserve, Kelly R. Ott, Benjamin Angeles, Michael Martis, Katherine Sciandra, Katherine Gillenwater, Clark Glory, Eli Meisel, Allison Choe, Rene Olivares-Navarrete, Jennifer L. Puetzer, and Kelly Lambert

ABSTRACT

When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.

WNT7B overexpression rescues bone loss caused by glucocorticoids in mice

AUTHORS

Hong Chen, Fangfang Song, Fanxin Long

ABSTRACT

Glucocorticoids, widely prescribed for anti-inflammatory and immunosuppressive purposes, are the most common secondary cause for osteoporosis and related fractures. Current anti-resorptive and anabolic therapies are insufficient for treating glucocorticoid-induced osteoporosis due to contraindications or concerns of side effects. Glucocorticoids have been shown to disrupt Wnt signaling in osteoblast-lineage cells, but the efficacy for Wnt proteins to restore bone mass after glucocorticoid therapy has not been examined. Here by using two mouse genetic models wherein WNT7B expression is temporally activated by either tamoxifen or doxycycline in osteoblast-lineage cells, we show that WNT7B recovers bone mass following glucocorticoid-induced bone loss, thanks to increased osteoblast number and function. However, WNT7B overexpression in bone either before or after glucocorticoid treatments does not ameliorate the abnormal accumulation of body fat. The study demonstrates a potent bone anabolic function for WNT7B in countering glucocorticoid-induced bone loss.

The CRH-Transgenic Cushingoid Mouse Is a Model of Glucocorticoid-Induced Osteoporosis

Glucocorticoids (GCs) have unparalleled anti-inflammatory and immunosuppressive properties, which accounts for their widespread prescription and use. Unfortunately, a limitation to GC therapy is a wide range of negative side effects including Cushing's syndrome, a disease characterized by metabolic abnormalities including muscle wasting and osteoporosis. GC-induced osteoporosis occurs in 30% to 50% of patients on GC therapy and thus, represents an important area of study.

Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation

Endogenous glucocorticoids (GCs) support normal bone development and bone mass maintenance, whereas long-term exposure to pharmacological dosages of GCs uncouples bone formation and resorption, resulting in GC-induced osteoporosis (GIOP). Heat shock protein 90 (HSP90) chaperoning glucocorticoid receptor (GR) signaling prompts us to speculate that HSP90 plays critical roles in GC-mediated bone formation and GIOP.

A Novel Hybrid Compound LLP2A-Ale Both Prevented and Rescued the Osteoporotic Phenotype in a Mouse Model of Glucocorticoid-Induced Osteoporosis

Prolonged glucocorticoid (GC) administration causes secondary osteoporosis (GIOP) and non-traumatic osteonecrosis. LLP2A-Ale is a novel bone-seeking compound that recruits mesenchymal stem cells to the bone surface, stimulates bone formation, and increases bone mass. The purpose of this study was to determine if treatment with LLP2A-Ale alone or in combination with parathyroid hormone (PTH) could prevent or treat GIOP in a mouse model.