Classic Ehlers–Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1+/− mouse, a model for classic EDS.
Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype
The Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (−/−) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype.
MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts
Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation.
Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation
Endogenous glucocorticoids (GCs) support normal bone development and bone mass maintenance, whereas long-term exposure to pharmacological dosages of GCs uncouples bone formation and resorption, resulting in GC-induced osteoporosis (GIOP). Heat shock protein 90 (HSP90) chaperoning glucocorticoid receptor (GR) signaling prompts us to speculate that HSP90 plays critical roles in GC-mediated bone formation and GIOP.
Sclerostin Antibody Increases Callus Size and Strength but does not Improve Fracture Union in a Challenged Open Rat Fracture Model
Open fractures remain a challenge in orthopedics. Current strategies to intervene are often inadequate, particularly in severe fractures or when treatment is delayed. Sclerostin is a negative regulator of bone growth and sclerostin-neutralizing antibodies (Scl-Ab) can increase bone mass and strength. The application of these antibodies to improve orthopedic repair has shown varied results, and may be dependent on the location and severity of the bony injury. We examined Scl-Ab treatment within an established rat osteotomy model with periosteal stripping analogous to open fracture repair.
Osteoblast-specific deletion of Hrpt2/Cdc73 results in high bone mass and increased bone turnover
Inactivating mutations that lead to loss of heterozygosity within the HRPT2/Cdc73 gene are directly linked to the development of primary hyperparathyroidism, parathyroid adenomas, and ossifying fibromas of the jaw (HPT-JT). The protein product of the Cdc73 gene, parafibromin, is a core member of the polymerase-associated factors (PAF) complex, which coordinates epigenetic modifiers and transcriptional machinery to control gene expression. We conditionally deleted Cdc73 within mesenchymal progenitors or within mature osteoblasts and osteocytes to determine the consequences of parafibromin loss within the mesenchymal lineage.