osteoclast

Dlk2 interacts with Syap1 to activate Akt signaling pathway during osteoclast formation

AUTHORS

Xinwei Chen, Xuzhuo Chen, Rui Chao, Yexin Wang, Yi Mao, Baoting Fan, Yaosheng Zhang, Weifeng Xu, An Qin & Shanyong Zhang

ABSTRACT

Excessive osteoclast formation and bone resorption are related to osteolytic diseases. Delta drosophila homolog-like 2 (Dlk2), a member of the epidermal growth factor (EGF)-like superfamily, reportedly regulates adipocyte differentiation, but its roles in bone homeostasis are unclear. In this study, we demonstrated that Dlk2 deletion in osteoclasts significantly inhibited osteoclast formation in vitro and contributed to a high-bone-mass phenotype in vivo. Importantly, Dlk2 was shown to interact with synapse-associated protein 1 (Syap1), which regulates Akt phosphorylation at Ser473. Dlk2 deletion inhibited Syap1-mediated activation of the AktSer473, ERK1/2 and p38 signaling cascades. Additionally, Dlk2 deficiency exhibits increased bone mass in ovariectomized mice. Our results reveal the important roles of the Dlk2-Syap1 signaling pathway in osteoclast differentiation and osteoclast-related bone disorders.

Gulp1 deficiency augments bone mass in male mice by affecting osteoclasts due to elevated 17β-estradiol levels

AUTHORS

Soon-Young Kim, Gun-Il Park, Seung-Yoon Park, Eun-Hye Lee, Hyuck Choi, Jeong-Tae Koh, Soyun Han, Man Ho Choi, Eui Kyun Park, In-San Kim, Jung-Eun Kim

ABSTRACT

The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17β-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.

Safranal inhibits estrogen-deficiency osteoporosis by targeting Sirt1 to interfere with NF-κB acetylation

AUTHORS

Sun-Ren Sheng, Yu-Hao Wu, Zi-Han Dai, Chen Jin, Gao-Lu He, Shu-Qing Jin, Bi-Yao Zhao, Xin Zhou, Cheng-Long Xie, Gang Zheng, Nai-Feng Tian

ABSTRACT

Background

Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Estrogen deficiency-mediated hyperactivated osteoclasts is the initiating factor for bone loss, which is regulated by nuclear factor-κB (NF-κB) signaling. Safranal (Saf) is a monoterpene aldehyde produced from Saffron (Crocus sativus L.) and possesses multiple biological properties, particularly the anti-inflammatory property. However, Saf's role in osteoporosis remains unknown.

Purpose

This study aims to validate the role of Saf in osteoporosis and explore the potential mechanism.

Study Design

The RANKL-exposed mouse BMM (bone marrow monocytes) and the castration-mediated osteoporosis model were applied to explore the effect and mechanism of Saf in vitro and in vivo.

Method

The effect of Saf on osteoclast formation and function were assessed by TRAcP staining, bone-resorptive experiment, qPCR, immunoblotting and immunofluorescence, etc. Micro-CT, HE, TRAcP and immunohistochemical staining were performed to estimate the effects of Saf administration on OVX-mediated osteoporosis in mice at imaging and histological levels.

Results

Saf concentration-dependently inhibited RANKL-mediated osteoclast differentiation without affecting cellular viability. Meanwhile, Saf-mediated anti-osteolytic capacity and Sirt1 upregulation were also found in ovariectomized mice. Mechanistically, Saf interfered with NF-κB signaling by activating Sirt1 to increase p65 deacetylation and inactivating IKK to decrease IκBα degradation.

Conclusion

Our results support the potential application of Saf as a therapeutic agent for osteoporosis.

A Zeb1/MtCK1 metabolic axis controls osteoclast activation and skeletal remodeling

AUTHORS

Lingxin Zhu, Yi Tang, Xiao-Yan Li, Samuel A Kerk, Costas A Lyssiotis, Wenqing Feng, Xiaoyue Sun, Geoffrey E Hespe, Zijun Wang, Marc P Stemmler, Simone Brabletz, Thomas Brabletz, Evan T Keller, Jun Ma, Jung-Sun Cho, Jingwen Yang, Stephen J Weiss

ABSTRACT

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.

Peroxiredoxin 5 regulates osteogenic differentiation through interaction with hnRNPK during bone regeneration

AUTHORS

Eunjin Cho, Xiangguo Che, Mary Jasmin Ang, Seongmin Cheon, Jinkyung Lee, Kwang Soo Kim, Chang Hoon Lee, Sang-Yeop Lee, Hee-Young Yang, Changjong Moon, Chungoo Park, Je-Yong Choi, Tae-Hoon Lee

ABSTRACT

Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC–MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.

USP53 regulates bone homeostasis by controlling Rankl expression in osteoblasts and bone marrow adipocytes

AUTHORS

Hadla Hariri, Orhun Kose, Aren Bezdjian, Sam J Daniel, René St-Arnaud

ABSTRACT

In the skeleton, osteoblasts and osteoclasts synchronize their activities to maintain bone homeostasis and integrity. Investigating the molecular mechanisms governing bone remodeling is critical and helps understand the underlying biology of bone disorders. Initially, we have identified the ubiquitin-specific peptidase gene (Usp53) as a target of the parathyroid hormone in osteoblasts and a regulator of mesenchymal stem cell differentiation. Mutations in USP53 have been linked to a constellation of developmental pathologies. However, the role of Usp53 in bone has never been visited. Here we show that Usp53 null mice have a low bone mass phenotype in vivo. Usp53 null mice exhibit a pronounced decrease in trabecular bone indices including trabecular bone volume (36%) and trabecular number (26%) along with an increase in trabecular separation (13%). Cortical bone parameters are also impacted showing a reduction in cortical bone volume (12%) and cortical bone thickness (15%). As a result, the strength and mechanical bone properties of Usp53 null mice have been compromised. At the cellular level, the ablation of Usp53 perturbs bone remodeling, augments osteoblast-dependent osteoclastogenesis, and increases osteoclast numbers. Bone marrow adipose tissue volume increased significantly with age in Usp53-deficient mice. Usp53 null mice displayed increased serum RANKL levels and Usp53 deficient osteoblasts and bone marrow adipocytes have increased expression of Rankl. Mechanistically, USP53 regulates RANKL expression by enhancing the interaction between VDR and SMAD3. This is the first report describing the function of Usp53 during skeletal development. Our results put Usp53 in display as a novel regulator of osteoblast–osteoclast coupling and open the door for investigating the involvement of USP53 in pathologies.