collagen

Reduced bone mass in collagen prolyl 4-hydroxylase P4ha1+/-;P4ha2-/- compound mutant mice

AUTHORS

Jussi-Pekka Tolonen, Antti M. Salo, Mikko Finnilä, Ellinoora Aro, Emma Karjalainen, Veli-Pekka Ronkainen, Kati Drushinin, Christophe Merceron, Valerio Izzi, Ernestina Schipani, Johanna Myllyharju

ABSTRACT

Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, while inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1+/-;P4ha2-/- mice, we have carried out gene expression analyses at whole tissue and single cell levels, biochemical analyses, microcomputed tomography and histomorphometric analyses and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1+/-;P4ha2-/- tibia and the C-P4H activity in primary P4ha1+/-;P4ha2-/- osteoblasts were reduced, while the population of osteoprogenitor colony forming-unit fibroblasts was increased in the P4ha1+/-;P4ha2-/- marrow. Thus, the P4ha1+/-;P4ha2-/- mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by bi-allelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele-dose dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix.

Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons

The small leucine-rich proteoglycans (SLRPs), decorin and biglycan, are key regulators of collagen fibril and matrix assembly. The goal of this work was to elucidate the roles of decorin and biglycan in tendon homeostasis. Our central hypothesis is that decorin and biglycan expression in the mature tendon would be critical for the maintenance of the structural and mechanical properties of healthy tendons.

Increased vascularization promotes functional recovery in the transected spinal cord rats by implanted vascular endothelial growth factor-targeting collagen scaffold

Spinal cord injury (SCI) is global health concern. The effective strategies for SCI are relevant to the improvement on nerve regeneration microenvironment. Vascular endothelial growth factor (VEGF) is an important cytokine for inducing angiogenesis and accelerating nerve system function recovery from injury. We proposed that VEGF could improve nerve regeneration in SCI.

The synergistic effect of type I collagen and hyaluronic acid on the biological properties of Col/HA-multilayer-modified titanium coatings: an in vitro and in vivo study

Type I collagen and hyaluronic acid are both the main components of bone extracellular matrix, and play important roles in regulating a cell's behavior. In this study, the synergistic effects of type I collagen (Col) and hyaluronic acid (HA) on the biological properties of Col/HA-multilayer-modified titanium coatings were investigated.

Collagen V haploinsufficiency in a murine model of classic Ehlers–Danlos syndrome is associated with deficient structural and mechanical healing in tendons

Classic Ehlers–Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1+/− mouse, a model for classic EDS.

Fkbp10 Deletion in Osteoblasts Leads to Qualitative Defects in Bone

Osteogenesis imperfecta (OI), also known as brittle bone disease, displays a spectrum of clinical severity from mild (OI type I) to severe early lethality (OI type II), with clinical features including low bone mass, fractures, and deformities. Mutations in the FK506 Binding Protein 10 (FKBP10), gene encoding the 65-kDa protein FKBP65, cause a recessive form of OI and Bruck syndrome, the latter being characterized by joint contractures in addition to low bone mass.