Suppression of Sclerostin Alleviates Radiation-Induced Bone Loss by Protecting Bone Forming Cells and Their Progenitors through Distinct Mechanisms

Focal radiotherapy is frequently associated with skeletal damage within the radiation field. Our previous in vitro study showed that activation of Wnt/β-catenin pathway can overcome radiation-induced DNA damage and apoptosis of osteoblastic cells. Neutralization of circulating Sclerostin with a monoclonal antibody (Scl-Ab) is an innovative approach for treating osteoporosis by enhancing Wnt/β-catenin signaling in bone.

Odanacatib, effects of 16-month treatment and discontinuation of therapy on bone mass, turnover and strength in the ovariectomized rabbit model of osteopenia

Odanacatib (ODN) a selective and reversible cathepsin K inhibitor, inhibits bone resorption, increases bone mass and reduces fracture risk in women with osteoporosis. A 16-month (~7- remodeling cycles) study was carried out in treatment mode to assess the effects of ODN versus ALN on bone mass, remodeling status and biomechanical properties of lumbar vertebrae (LV) and femur in ovariectomized (OVX) rabbits.

Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats

Treatment with hydrogen sulfide mitigates spinal cord injury-induced sublesional bone loss, possibly through abating oxidative stress, suppressing MMP activity, and activating Wnt/β-catenin signaling. Spinal cord injury (SCI)-induced sublesional bone loss represents the most severe osteoporosis and is resistant to available treatments to data.

Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution

Some Ca–Mg-silicate ceramics have been widely investigated to be highly bioactive and biodegradable, whereas their osteogenic potential and especially biomechanical response in the early stage in vivo are scarcely demonstrated.

Material properties of bone in the femoral head treated with ibandronate and BMP-2 following ischemic osteonecrosis

Bone morphogenetic protein (BMP)-2 and ibandronate (IB) decrease the femoral head deformity following ischemic osteonecrosis of the femoral head (ONFH). The purpose of this study was to determine the effects of BMP-2 and IB on the mineral content and nanoindentation properties of the bone following ONFH. ONFH was surgically induced in a femoral head of piglets.