Bmp2 and Bmp4 genes were ablated in adult mice (KO) using a conditional gene knockout technology. Bones were evaluated by microcomputed tomography (μCT), bone strength tester, histomorphometry and serum biochemical markers of bone turnover. Drill-hole was made at femur metaphysis and bone regeneration in the hole site was measured by calcein binding and μCT.
Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma
Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions.
Association Between Progranulin and Gaucher Disease
Structure activity relationship study on the peptide hormone preptin, a novel bone-anabolic agent for the treatment of osteoporosis
Preptin is a 34-residue pancreatic hormone shown to be anabolic to bone in vitro and in vivo. The bone activity of preptin resides within the (1-16) N-terminal fragment. Due to its peptidic nature, the truncated fragment of preptin is enzymatically unstable; however it provides an attractive framework for the creation of stable analogues using various peptidomimetic techniques.
Miniscrew-assisted slow expansion of mature rabbit sutures
Heavy metals accumulation affects bone microarchitecture in osteoporotic patients
Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass.