During pregnancy and lactation, the maternal skeleton provides calcium for fetal/infant growth, resulting in substantial bone loss, which partially recovers after weaning. However, the amount of bone that is lost and the extent of post-weaning recovery are highly variable among different skeletal sites, and, despite persistent alterations in bone structure at some locations, reproductive history does not increase postmenopausal fracture risk.
Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats
Treatment with hydrogen sulfide mitigates spinal cord injury-induced sublesional bone loss, possibly through abating oxidative stress, suppressing MMP activity, and activating Wnt/β-catenin signaling. Spinal cord injury (SCI)-induced sublesional bone loss represents the most severe osteoporosis and is resistant to available treatments to data.