osteoarthritis

Exosomal transfer of osteoclast-derived miRNAs to chondrocytes contributes to osteoarthritis progression

AUTHORS

Jin Liu, Xiaohao Wu, Jun Lu, Guangxin Huang, Lei Dang, Huarui Zhang, Chuanxin Zhong, Zongkang Zhang, Dijie Li, Fangfei Li, Chao Liang, Yuanyuan Yu, Bao-Ting Zhang, Lin Chen, Aiping Lu & Ge Zhang

ABSTRACT

Osteoarthritis (OA) is a prevalent aging-related joint disease lacking disease-modifying therapies. Here, we identified an upregulation of circulating exosomal osteoclast (OC)-derived microRNAs (OC-miRNAs) during the progression of surgery-induced OA in mice. We found that reducing OC-miRNAs by Cre-mediated excision of the key miRNA-processing enzyme Dicer or blocking the secretion of OC-originated exosomes by short interfering RNA-mediated silencing of Rab27a substantially delayed the progression of surgery-induced OA in mice. Mechanistically, the exosomal transfer of OC-miRNAs to chondrocytes reduced the resistance of cartilage to matrix degeneration, osteochondral angiogenesis and sensory innervation during OA progression by suppressing tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-3. Furthermore, systemic administration of a new OC-targeted exosome inhibitor (OCExoInhib) blunted the progression of surgery-induced OA in mice. We suggest that targeting the exosomal transfer of OC-miRNAs to chondrocytes represents a potential therapeutic avenue to tackle OA progression.

Phospholipase A2 inhibitor-loaded micellar nanoparticles attenuate inflammation and mitigate osteoarthritis progression

AUTHORS

Yulong Wei, Lesan Yan, Lijun Luo, Tao Gui, Ahmad Amirshaghaghi, Tianyan You, Andrew Tsourkas, Ling Qin, Zhiliang Cheng

ABSTRACT

Treating osteoarthritis (OA) remains a major clinical challenge. Despite recent advances in drug discovery and development, no disease-modifying drug for knee OA has emerged with any significant clinical success, in part due to the lack of valid and responsive therapeutic targets and poor drug delivery within knee joints. In this work, we show that the amount of secretory phospholipase A2 (sPLA2) enzyme increases in articular cartilage in human and mouse OA cartilage tissues. We hypothesize that inhibition of sPLA2 activity may be an effective treatment strategy for OA. To develop a sPLA2-responsive and nanoparticle (NP)-based interventional platform for OA management, we incorporated a sPLA2 inhibitor (sPLA2i) into the phospholipid membrane of micelles. The engineered sPLA2i-loaded micellar nanoparticles (sPLA2i-NPs) were able to penetrate deep into the cartilage matrix, prolong retention in the joint space, and mitigate OA progression. These findings suggest that sPLA2i-NPs can be promising therapeutic agents for OA treatment.

EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation

Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis.

Heavy metals accumulation affects bone microarchitecture in osteoporotic patients

Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass.

Characterization of ex vivo-generated bovine and human cartilage by immunohistochemical, biochemical, and MRI analyses

Osteoarthritis (OA) is a prevalent age-associated disease involving altered chondrocyte homeostasis and cartilage degeneration. The avascular nature of cartilage and the altered chondrocyte phenotype characteristic of OA severely limit the capacity for in vivo tissue regeneration.