osteoporosis

Globular adiponectin reverses osteo-sarcopenia and altered body composition in ovariectomized rats

Adiponectin regulates various metabolic processes including glucose flux, lipid breakdown and insulin response. We recently reported that adiponectin receptor1 (adipoR1) activation by a small molecule reverses osteopenia in leptin receptor deficient db/db (diabetic) mice. However, the role of adiponectin in bone metabolism under the setting of post-menopausal (estrogen-deficiency) osteopenia and associated metabolic derangements has not been studied.

Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats

Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats.

Combination of PTH (1-34) with anti-IL17 prevents bone loss by inhibiting IL-17/N-cadherin mediated disruption of PTHR1/LRP-6 interaction

Combinations of anabolic and anti-resorptive agents have potential to improve bone density more than either agent alone. In this study, we determine the combining effect of anti-IL17 antibody and PTH (1-34) in mitigation of ovariectomy induced bone loss. Ovariectomized BALB/c female mice were treated with anti-IL17 and iPTH monotherapies and their combination.

Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism

Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity.

Hibernating Little Pocket Mice Show Few Seasonal Changes in Bone Properties

Periods of disuse or physical inactivity increases bone porosity and decreases bone mineral density, resulting in a loss of bone mechanical competence in many animals. Although large hibernators like bears and marmots prevent bone loss during hibernation, despite long periods of physical inactivity, some small hibernators do lose bone during hibernation.

Cyanidin Chloride Inhibits Ovariectomy-Induced Osteoporosis by Suppressing RANKL-mediated Osteoclastogenesis and Associated Signaling Pathways

Over-production and activation of osteoclasts is a common feature of osteolytic conditions such as osteoporosis, tumor-associated osteolysis, and inflammatory bone erosion. Cyanidin Chloride, a subclass of anthocyanin, displays antioxidant and anti-carcinogenesis properties, but its role in osteoclastic bone resorption and osteoporosis is not well understood. In this study, we showed that Cyanidin Chloride inhibits osteoclast formation, hydroxyapatite resorption, and receptor activator of NF-κB ligand (RANKL)-induced osteoclast marker gene expression; including ctr, ctsk and trap.