porosity

A Novel Resorbable Composite Material Containing Poly(ester-co-urethane) and Precipitated Calcium Carbonate Spherulites for Bone Augmentation—Development and Preclinical Pilot Trials

AUTHORS

Claudia Rode, Ralf Wyrwa, Juergen Weisser, Matthias Schnabelrauch, Marijan Vučak, Stefanie Grom, Frank Reinauer, Adrian Stetter, Karl Andreas Schlegel, Rainer Lutz

ABSTRACT

Polyurethanes have the potential to impart cell-relevant properties like excellent biocompatibility, high and interconnecting porosity and controlled degradability into biomaterials in a relatively simple way. In this context, a biodegradable composite material made of an isocyanate-terminated co-oligoester prepolymer and precipitated calcium carbonated spherulites (up to 60% w/w) was synthesized and investigated with regard to an application as bone substitute in dental and orthodontic application. After foaming the composite material, a predominantly interconnecting porous structure is obtained, which can be easily machined. The compressive strength of the foamed composites increases with raising calcium carbonate content and decreasing calcium carbonate particle size. When stored in an aqueous medium, there is a decrease in pressure stability of the composite, but this decrease is smaller the higher the proportion of the calcium carbonate component is. In vitro cytocompatibility studies of the foamed composites on MC3T3-E1 pre-osteoblasts revealed an excellent cytocompatibility. The in vitro degradation behaviour of foamed composite is characterised by a continuous loss of mass, which is slower with higher calcium carbonate contents. In a first pre-clinical pilot trial the foamed composite bone substitute material (fcm) was successfully evaluated in a model of vertical augmentation in an established animal model on the calvaria and on the lateral mandible of pigs.

Material properties of bighorn sheep (Ovis canadensis) horncore bone with implications for energy absorption during impacts

Bighorn sheep rams participate in high impact head-butting without overt signs of brain injury, thus providing a naturally occurring animal model for studying brain injury mitigation. Previously published finite element modeling showed that both the horn and bone materials play important roles in reducing brain cavity accelerations during ramming.

Hibernating Little Pocket Mice Show Few Seasonal Changes in Bone Properties

Periods of disuse or physical inactivity increases bone porosity and decreases bone mineral density, resulting in a loss of bone mechanical competence in many animals. Although large hibernators like bears and marmots prevent bone loss during hibernation, despite long periods of physical inactivity, some small hibernators do lose bone during hibernation.

MMP-13 is one of the critical mediators of the effect of HDAC4 deletion on the skeleton

Histone deacetylase 4 (Hdac4) regulates chondrocyte hypertrophy. Hdac4− / − mice are runted in size and do not survive to weaning. This phenotype is primarily due to the acceleration of onset of chondrocyte hypertrophy and, as a consequence, inappropriate endochondral mineralization.

Overexpression of Gα11 in Osteoblast Lineage Cells Suppresses the Osteoanabolic Response to Intermittent PTH and Exercise

Intermittent parathyroid hormone (iPTH) treatment and mechanical loading are osteoanabolic stimuli that are partially mediated through actions on G protein-coupled receptors (GPCRs). GPCR signaling can be altered by heterotrimeric G protein Gα subunits levels, which can therefore lead to altered responses to such stimuli.