implant

Cell and Tissue Response to Polyethylene Terephthalate Mesh Containing Bone Allograft in Vitro and in Vivo

Extended polyethylene terephthalate mesh (PET, Dacron) can provide containment of compressed particulate allograft and autograft. This study assessed if PET mesh would interfere with osteoprogenitor cell migration from vertebral plates through particulate graft, and its effect on osteoblast differentiation or the quality of bone forming within fusing vertebra during vertebral interbody fusion.

Comparison of Dehydrated Human Amnion-Chorion and Type 1 Bovine Collagen Membranes in Alveolar Ridge Preservation: A Clinical and Histological Study

Alveolar ridge preservation maintains ridge dimensions and bone quality for implant placement. The aim of this randomized controlled clinical study is to compare the use of a human amnion-chorion membrane to a collagen membrane in an exposed-barrier ridge preservation technique. Furthermore, this study will determine if intentional membrane exposure compromises ridge dimensions and bone vitality. Forty-three patients requiring extraction and delayed implant placement were randomly assigned into either the experimental or control group.

Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions

Diabetes can impair osteoblastic functions and negatively interfere with osteointegration at the bone/implant interface. Previously, we prepared a nanosized calcium silicate (CS) incorporated-polyetheretherketone (PK) biocomposite (CS/PK) and found that the CS/PK composite exhibited enhanced osteoblast functions in vitro and osteointegration in vivo, but its bioperformance under diabetic conditions remained elusive.

The effect of polyethylenglycol gel on the delivery and osteogenic differentiation of homologous tooth germ–derived stem cells in a porcine model

The aim of this study was to investigate if bone regeneration can be promoted by homologous transplantation of STRO-1 sorted (STRO-1+) porcine tooth germ mesenchymal stem cells (TGSCs) with the combination of polyethylenglycol (PEG)-based hydrogel and biphasic calcium phosphate (BCP) scaffolds.

Cell and Tissue Response to Polyethylene Terephthalate Mesh Containing Bone Allograft in Vitro and in Vivo

AUTHORS

D. Joshua Cohen, Lisa Ferrara, Marcus B. Stone, Zvi Schwartz and Barbara D. Boyan

ABSTRACT

Background Extended polyethylene terephthalate mesh (PET, Dacron) can provide containment of compressed particulate allograft and autograft. This study assessed if PET mesh would interfere with osteoprogenitor cell migration from vertebral plates through particulate graft, and its effect on osteoblast differentiation or the quality of bone forming within fusing vertebra during vertebral interbody fusion.

Methods The impact of PET mesh on the biological response of normal human osteoblasts (NHOst cells) and bone marrow stromal cells (MSCs) to particulate bone graft was examined in vitro. Cells were cultured on rat bone particles +/− mesh; proliferation and osteoblast differentiation were assessed. The interface between the vertebral endplate, PET mesh, and newly formed bone within consolidated allograft contained by mesh was examined in a sheep model via microradiographs, histology, and mechanical testing.

Results Growth on bone particles stimulated proliferation and early differentiation of NHOst cells and MSCs, but delayed terminal differentiation. This was not negatively impacted by mesh. New bone formation in vivo was not prevented by use of a PET mesh graft containment device. Fusion was improved in sites containing allograft/demineralized bone matrix (DBM) versus autograft and was further enhanced when stabilized using pedicle screws. Only sites treated with allograft/DBM+screws exhibited greater percent bone ingrowth versus discectomy or autograft. These results were mirrored biomechanically.

Conclusions PET mesh does not negatively impact cell attachment to particulate bone graft, proliferation, or initial osteoblast differentiation. The results demonstrated that bone growth occurs from vertebral endplates into graft material within the PET mesh. This was enhanced by stabilization with pedicle screws leading to greater bone ingrowth and biomechanical stability across the fusion site.

Built-In Electric Fields Dramatically Induce Enhancement of Osseointegration

Rapid and effective osseointegration is a great challenge in clinical practice. Endogenous electronegative potentials spontaneously appear on bone defect sites and mediate healing. Thus, bone healing can potentially be stimulated using physiologically relevant electrical signals in implants. However, it is difficult to directly introduce physiologically relevant electric fields in bone tissue.