development

Targeted postnatal knockout of Sclerostin using a bone-targeted adeno-associated viral vector increases bone anabolism and decreases canalicular density

AUTHORS

Alexandra K. O'Donohue, Ya Xiao, Lucinda R. Lee, Timothy Schofield, Tegan L. Cheng, Craig Munns, Paul A. Baldock, Aaron Schindeler

ABSTRACT

Purpose

The creation of murine gene knockout models to study bone gene functions often requires the resource intensive crossbreeding of Cre transgenic and gene-floxed strains. The developmental versus postnatal roles of genes can be difficult to discern in such models. For example, embryonic deletion of the Sclerostin (Sost) gene establishes a high-bone mass phenotype in neonatal mice that may impact on future bone growth. To generate a postnatal skeletal knockout of Sost in adult mice using a single injection of a bone-targeted recombinant adeno-associated virus (rAAV) vector.

Methods

8-week-old Sostflox/flox mice were injected with saline (control) or a single injection containing 5 × 1011 vg AAV8-Sp7-Cre vector. Ai9 fluorescent Cre reporter mice were dosed in parallel to confirm targeting efficiency. After 6 weeks, detailed bone analysis performed via microCT, biomechanical testing, and bone histology on vertebral and long bone specimens.

Results

The AAV8-Sp7-Cre vector induced widespread persistent recombination in the bone compartment. Regional microCT analyses revealed significant increases in bone with vector treatment. In the L3 vertebrae, Sostflox/flox:AAV-Cre showed a 22 % increase in bone volume and 21 % in trabecular bone fraction compared to controls; this translated to a 17 % increase in compressive strength. In the tibiae, Sostflox/flox:AAV-Cre led to small but statistically significant increases in cortical bone volume and thickness. These were consistent with a 25 % increase in mineral apposition rate, but this did not translate into increased four-point bending strength. Ploton silver nitrate stain on histological sections revealed an unexpected increase in canalicular density associated with Sost ablation.

Conclusion

This report demonstrates a proof-of-concept that the AAV8-Sp7-Cre vector can efficiently produce postnatal skeletal knockout mice using gene-floxed strains. This technology has the potential for broad utility in the bone field with existing conditional lines. These data also confirm an important postnatal role for Sost in regulating bone homeostasis, consistent with prior studies using neutralizing Sclerostin antibodies, and highlights a novel role of Sost in canalicular remodeling.

Reduced bone mass in collagen prolyl 4-hydroxylase P4ha1+/-;P4ha2-/- compound mutant mice

AUTHORS

Jussi-Pekka Tolonen, Antti M. Salo, Mikko Finnilä, Ellinoora Aro, Emma Karjalainen, Veli-Pekka Ronkainen, Kati Drushinin, Christophe Merceron, Valerio Izzi, Ernestina Schipani, Johanna Myllyharju

ABSTRACT

Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, while inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1+/-;P4ha2-/- mice, we have carried out gene expression analyses at whole tissue and single cell levels, biochemical analyses, microcomputed tomography and histomorphometric analyses and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1+/-;P4ha2-/- tibia and the C-P4H activity in primary P4ha1+/-;P4ha2-/- osteoblasts were reduced, while the population of osteoprogenitor colony forming-unit fibroblasts was increased in the P4ha1+/-;P4ha2-/- marrow. Thus, the P4ha1+/-;P4ha2-/- mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by bi-allelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele-dose dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix.

In vivo imaging tools for functional assessment of biomaterials implanted bone regeneration

AUTHORS

Subhasis Roy; Prasenjit Mukherjee; Samit Kumar Nandi

ABSTRACT

Since the discovery of X-rays and its first use in imaging of a hand, bone tissue has been the chapter of interest in medical imaging. However, X-ray imaging poses limitations nowadays owing to the augmented complexity of implant scaffolds as well as with the advances in bone engineering. As a result, advanced follow-up imaging techniques are of paramount necessity for effective postoperative characterization. Moreover, it is also needed to search for non-invasive, high-sensitivity, and high-resolution structural, functional, and molecular imaging techniques such as acoustic, optical, magnetic, X-Ray, electron, ultrasound, and nuclear imaging, etc. as an alternative to normally used X-ray computed tomography. Further, enthusiastic preclinical scanners have turned out to be accessible, with sensitivity and resolution even superior to clinical scanners, as a consequence helping a rapid transformation from preclinical to clinical applications. Besides, recently, bone-specific probes and contrast agents are developing for better imaging tools in bone-tissue engineering applications. This review highlights such emerging preclinical imaging tools, each with its individual potencies and flaws, either used only or in combination. In particular, multimodal imaging will significantly add to improve the present understanding in the characterization of bone regenerative processes.

Ablation of Enpp6 results in transient bone hypomineralization

Biomineralization is a fundamental process key to the development of the skeleton. The phosphatase orphan phosphatase 1 (PHOSPHO1), which likely functions within extracellular matrix vesicles, has emerged as a critical regulator of biomineralization. The biochemical pathways which generate intravesicular PHOSPHO1 substrates are however currently unknown. We hypothesized that the enzyme ectonucleotide pyrophosphatase/phosphodiesterase (ENPP6) is an upstream source of PHOSPHO1 substrate.

The effect of polyethylenglycol gel on the delivery and osteogenic differentiation of homologous tooth germ–derived stem cells in a porcine model

The aim of this study was to investigate if bone regeneration can be promoted by homologous transplantation of STRO-1 sorted (STRO-1+) porcine tooth germ mesenchymal stem cells (TGSCs) with the combination of polyethylenglycol (PEG)-based hydrogel and biphasic calcium phosphate (BCP) scaffolds.

Adiponectin Reduces Bone Stiffness: Verified in a Three-Dimensional Artificial Human Bone Model In Vitro

AUTHORS

Sigrid Haugen, iJianying He, Alamelu Sundaresan, Astrid Kamilla Stunes, Kristin Matre Aasarød, Hanna Tiainen, Unni Syversen, Bjørn Skallerud and Janne Elin Reseland

ABSTRACT

Primary human osteoblasts and osteoclasts incubated in a rotating coculture system without any scaffolding material, form bone-like tissue that may be used to evaluate effects of various compounds on mechanical strength. Circulating adiponectin has been found to be negatively associated with BMD and strength and was therefore assessed in this system. Osteospheres of human osteoblasts and osteoclasts were generated with and without adiponectin. The osteospheres were scanned using micro-computed tomography, the mechanical properties were tested by flat punch compression using nanoindentation equipment, and the cellular morphology characterized by microscopy. The association between autologously produced adiponectin and biomechanical properties was further evaluated by quantitation of adiponectin levels using quantitative polymerase chain reaction (qPCR) and immunoassays, and identification of stiffness by bending test of rat femurs. The molecular mechanisms were examined in vitro using human bone cells. Mechanical testing revealed that adiponectin induced a more compliant osteosphere compared with control. The osteospheres had a round, lobulated appearance with morphologically different areas; inner regions containing few cells embedded in a bone-like material surrounded by an external area with a higher cell quantity. The expression of adiponectin was found to correlate positively to ultimate bending moment and ultimate energy absorption and deflection, on the other hand, it correlated negatively to bending stiffness, indicating autocrine and/or paracrine effects of adiponectin in bone. Adiponectin enhanced proliferation and expression of collagen, leptin, and tumor necrosis factor-alpha in osteoblasts and stimulated proliferation, but not the functional activity of osteoclasts. Our results indicate that both administration of adiponectin during osteosphere production and in situ elevated levels of adiponectin in rat femurs, reduced stiffness of the bone tissues. An increase in undifferentiated cells and extracellular matrix proteins, such as collagen, may explain the reduced bone stiffness seen in the osteospheres treated with adiponectin.