diabetes

Type 1 diabetic Akita mice have low bone mass and impaired fracture healing

AUTHORS

Pei Hu, Jennifer A. McKenzie, Evan G. Buettmann, Nicole Migotsky, Michael J. Gardner, Matthew J.Silva

ABSTRACT

Type 1 diabetes (T1DM) impairs bone formation and fracture healing in humans. Akita mice carry a mutation in one allele of the insulin-2 (Ins2) gene, which leads to pancreatic beta cell dysfunction and hyperglycemia by 5–6 weeks age. We hypothesized that T1DM in Akita mice is associated with decreased bone mass, weaker bones, and impaired fracture healing. Ins2 ± (Akita) and wildtype (WT) males were subjected to femur fracture at 18-weeks age and healing assessed 3–21 days post-fracture. Non-fractured left femurs were assessed for morphology (microCT) and strength (bending or torsion) at 19–21 weeks age. Fractured right femurs were assessed for callus mechanics (torsion), morphology and composition (microCT and histology) and gene expression (qPCR). Both Akita and WT mice gained weight from 3 to 18 weeks age, but Akita mice weighed less starting at 5 weeks (−5.2%, p < 0.05). At 18–20 weeks age Akita mice had reduced serum osteocalcin (−30%), cortical bone area (−16%), and thickness (−17%) compared to WT, as well as reduced cancellous BV/TV (−39%), trabecular thickness (−23%) and vBMD (−31%). Mechanical testing of non-fractured femurs showed decreased structural (stiffness, ultimate load) and material (ultimate stress) properties of Akita bones. At 14 and 21 days post fracture Akita mice had a significantly smaller callus than WT mice (~30%), with less cartilage and bone area. Assessment of torsional strength showed a weaker callus in Akita mice with lower stiffness (−42%), maximum torque (−44%) and work to fracture (−44%). In summary, cortical and cancellous bone mass were reduced in Akita mice, with lower bone mechanical properties. Fracture healing in Akita mice was impaired by T1DM, with a smaller, weaker fracture callus due to decreased cartilage and bone formation. In conclusion, the Akita mouse mimics some of the skeletal features of T1DM in humans, including osteopenia and impaired fracture healing, and may be useful to test interventions.

Diabetic Conditions Confer Metabolic and Structural Modifications to Tissue-Engineered Skeletal Muscle

Skeletal muscle is a tissue that is directly involved in the progression and persistence of type 2 diabetes (T2D), a disease that is becoming increasingly common. Gaining better insight into the mechanisms that are affecting skeletal muscle dysfunction in the context of T2D has the potential to lead to novel treatments for a large number of patients.

Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions

AUTHORS

Rui Ma, Yongwei Li, Jialin Wang, Pei Yang, Kunzheng Wang & Wei Wang

ABSTRACT

Diabetes can impair osteoblastic functions and negatively interfere with osteointegration at the bone/implant interface. Previously, we prepared a nanosized calcium silicate (CS) incorporated-polyetheretherketone (PK) biocomposite (CS/PK) and found that the CS/PK composite exhibited enhanced osteoblast functions in vitro and osteointegration in vivo, but its bioperformance under diabetic conditions remained elusive. In this study, MC3T3-E1 cells incubated on CS/PK and PK samples were subjected to diabetic serum (DS) and normal serum (NS); cell attachment, morphology, spreading, proliferation, and osteogenic differentiation were compared to assess in vitro osteoblastic functions on the surfaces of different materials. An in vivo test was performed on diabetic rabbits implanted with CS/PK or PK implants into the cranial bone defect to assess the osteointegration ability of the implants. In vitro results showed that diabetes inhibited osteoblastic functions evidenced by impaired morphology and spreading, and decreased attachment, proliferation, and osteogenic differentiation compared with the findings under normal conditions. Notably, CS/PK ameliorated osteoblastic disfunction under diabetic conditions in vitro. In vivo results from micro-CT and histologic examinations revealed that rabbits with CS/PK implants exhibited improved osteointegration at the bone/implant interface under diabetic conditions compared with PK. Therefore, the CS/PK composite improved the impaired osteointegration induced by diabetes and is a promising orthopedic or craniofacial implant material that may obtain good clinical performance in diabetic patients.

Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions

Diabetes can impair osteoblastic functions and negatively interfere with osteointegration at the bone/implant interface. Previously, we prepared a nanosized calcium silicate (CS) incorporated-polyetheretherketone (PK) biocomposite (CS/PK) and found that the CS/PK composite exhibited enhanced osteoblast functions in vitro and osteointegration in vivo, but its bioperformance under diabetic conditions remained elusive.