bone

Loss of Notch signaling in skeletal stem cells enhances bone formation with aging

AUTHORS

Lindsey H. Remark, Kevin Leclerc, Malissa Ramsukh, Ziyan Lin, Sooyeon Lee, Backialakshmi Dharmalingam, Lauren Gillinov, Vasudev V. Nayak, Paulo El Parente, Margaux Sambon, Pablo J. Atria, Mohamed A. E. Ali, Lukasz Witek, Alesha B. Castillo, Christopher Y, Park, Ralf H. Adams, Aristotelis Tsirigos, Sophie M. Morgani & Philipp Leucht

ABSTRACT

Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.

β-Arrestin 2 knockout prevents bone loss in response to continuous parathyroid hormone stimulation in male and female mice

AUTHORS

Gilberto Li Feng, Marc D Grynpas & Jane Mitchell

ABSTRACT

Background

β-Arrestin 2 (β-arr2) binds activated parathyroid hormone (PTH) receptors stimulating internalization. PTH stimulates both anabolic and catabolic effect on bone depending on the way it is administered. Intermittent PTH stimulation increases trabecular bone formation in mice, but this is decreased in mice lacking β-arr 2, suggesting a role for β-arr 2 in the anabolic effects of PTH. The role of β-arr 2 in the catabolic effects of continuous PTH (cPTH) treatment is not known.

Objective

To assess the effects of cPTH administration on bone in mice lacking β-arr 2 compared to wild-type (WT).

Methods

Groups of male and female WT or β-arr2 knockout (KO) mice were administered either PTH or phosphate-buffered saline by osmotic pumps for 2 weeks. Following treatment, serum calcium and phosphate levels were measured, bone structure and mineral density were measured by microcomputed tomography, and bone cells measured by static and dynamic histomorphometry.

Results

β-arr2 KO had no effects on skeletal development in mice of either sex. PTH treatment caused hypercalcemia and hypophosphatemia and decreased trabecular and cortical bone only in male WT mice. β-arr2 KO in male mice completely abrogated the effects of PTH on bone, while in female β-arr2 KO mice, PTH treatment increased trabecular bone with no effects on cortical bone.

Conclusions

These results demonstrate a profound sex effect on skeletal responses to cPTH treatment, suggesting a protective effect of estrogen on bone loss. β-arr2 plays a role in restraining the anabolic effects of PTH in both male and female mice.

Disrupted development from head to tail: Pervasive effects of postnatal restricted resources on neurobiological, behavioral, and morphometric outcomes

AUTHORS

Molly H. Kent, Joanna C. Jacob, Gabby Bowen, Janhavi Bhalerao, Stephanie Desinor, Dylan Vavra, Danielle Leserve, Kelly R. Ott, Benjamin Angeles, Michael Martis, Katherine Sciandra, Katherine Gillenwater, Clark Glory, Eli Meisel, Allison Choe, Rene Olivares-Navarrete, Jennifer L. Puetzer, and Kelly Lambert

ABSTRACT

When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.

Osteocyte CIITA aggravates osteolytic bone lesions in myeloma

AUTHORS

Huan Liu, Jin He, Rozita Bagheri-Yarmand, Zongwei Li, Rui Liu, Zhiming Wang, Duc-hiep Bach, Yung-hsing Huang, Pei Lin, Theresa A. Guise, Robert F. Gagel & Jing Yang

ABSTRACT

Osteolytic destruction is a hallmark of multiple myeloma, resulting from activation of osteoclast-mediated bone resorption and reduction of osteoblast-mediated bone formation. However, the molecular mechanisms underlying the differentiation and activity of osteoclasts and osteoblasts within a myelomatous microenvironment remain unclear. Here, we demonstrate that the osteocyte-expressed major histocompatibility complex class II transactivator (CIITA) contributes to myeloma-induced bone lesions. CIITA upregulates the secretion of osteolytic cytokines from osteocytes through acetylation at histone 3 lysine 14 in the promoter of TNFSF11 (encoding RANKL) and SOST (encoding sclerostin), leading to enhanced osteoclastogenesis and decreased osteoblastogenesis. In turn, myeloma cell–secreted 2-deoxy-D-ribose, the product of thymidine catalyzed by the function of thymidine phosphorylase, upregulates CIITA expression in osteocytes through the STAT1/IRF1 signaling pathway. Our work thus broadens the understanding of myeloma-induced osteolysis and indicates a potential strategy for disrupting tumor-osteocyte interaction to prevent or treat patients with myeloma bone disease.

The Role of Bone Muscle Ring Finger-1 (MuRF1), MuRF2, MuRF3, and Atrogin-1 on Microarchitecture In Vivo

AUTHORS

Vidyani Suryadevara, Connor J. Krehbial, Danielle Halsey & Monte S. Willis

ABSTRACT

Ubiquitin proteasome system was found to contribute to bone loss by regulating bone turnover and metabolism, by modulating osteoblast differentiation and bone formation as well as formation of osteoclasts that contribute to bone resorption. Muscle Ring Finger (MuRF) are novel ubiquitin ligases, which are muscle specific and have not been much implicated in the bone but have been implicated in several human diseases including heart failure and skeletal muscle atrophy. This study is aimed at understanding the role of MuRF1, MuRF2, MuRF3 and Atrogin which are distinct MuRF family proteins in bone homeostasis. Wildtype, heterozygous and homozygous mice of each of the isoforms were used and the bone microarchitecture and mechanical properties were assessed using microCT and biomechanics. MuRF1 depletion was found to alter cortical properties in both males and females, but only trabecular spacing in the females. MuRF2 depletion let to no changes in the cortical and trabecular properties but change in the strain to yield in the females. Depletion of MuRF3 led to decrease in the cortical properties in the females and increase in the trabecular properties in the males. Atrogin depletion was found to reduce cortical properties in both males and females, whereas some trabecular properties were found to be reduced in the females. Each muscle-specific ligase was found to alter the bone structure and mechanical properties in a distinct a sex-dependent manner.

Response of the periodontal tissues to β-adrenergic stimulation

AUTHORS

Renata Mendonça Moraes, Florent Elefteriou, Ana Lia Anbinder

ABSTRACT

Aims

Stimulation of β-adrenergic receptors (βAR) in osteoblasts by isoproterenol (ISO) was shown to induce Vascular Endothelial Growth Factor (VEGF) and angiogenesis in long bones. We thus aimed to determine the vascular response of mandibular tissues to βAR stimulation regarding blood vessel formation.

Main methods

Six-week-old wild-type C57BL6 female mice received daily intraperitoneal injections of ISO or phosphate buffered saline (PBS) for 1 month. Hemimandibles and tibias were collected for immunolocalization of endomucin, tyrosine hydroxylase (TH), neuropeptide Y (NPY) and norepinephrine transporter (NET). Moreover, Vegfa, Il-1 β, Il-6, Adrb2 and Rankl mRNA expression was assessed in mandibles and tibias 2 h after PBS or ISO treatment.

Key findings

Despite similar sympathetic innervation and Adrb2 expression between mandibular tissues and tibias, with TH and NPY+ nerve fibers distributed around blood vessels, ISO treatment did not increase endomucin+ vessel area or the total number of endomucin+ vessels in any of the regions investigated (alveolar bone, periodontal ligament, and dental pulp). Consistent with these results, the expression of Vegfα, Il-6, Il-1β, and Rankl in the mandibular molar region did not change following ISO administration. We detected high expression of NET by immunofluorescence in mandible alveolar osteoblasts, osteocytes, and periodontal ligament fibroblasts, in addition to significantly higher Net expression by qPCR compared to the tibia from the same animals.

Significance

These findings indicate a differential response to βAR agonists between mandibular and tibial tissues, since the angiogenic potential of sympathetic outflow observed in long bones is absent in periodontal tissues.