Inflammation

Prenatal vitamin D supplementation mitigates inflammation-related alveolar remodeling in neonatal mice

AUTHORS

Julia Waiden, Motaharehsadat Heydarian, Prajakta Oak, Markus Koschlig, Nona Kamgari, Michael Hagemann, Matthias Wjst, and Anne Hilgendorff

ABSTRACT

The development of chronic lung disease in the neonate, also known as bronchopulmonary dysplasia (BPD), is the most common long-term complication in prematurely born infants. In BPD, the disease-characteristic inflammatory response culminates in nonreversible remodeling of the developing gas exchange area, provoked by the impact of postnatal treatments such as mechanical ventilation (MV) and oxygen treatment. To evaluate the potential of prenatal treatment regimens to modulate this inflammatory response and thereby impact the vulnerability of the lung towards postnatal injury, we designed a multilayered preclinical mouse model. After administration of either prenatal vitamin D enriched (VitD+; 1,500 IU/g food) or deprived (VitD-; <10 IU/Kg) food during gestation in C57B6 mice (the onset of mating until birth), neonatal mice were exposed to hyperoxia (FiO2=0.4) with or without MV for 8h at day 5-7 of life, whereas controls spontaneously breathed room air. Prenatal vitamin D supplementation resulted in a decreased number of monocytes/macrophages in the neonatal lung undergoing postnatal injury together with reduced TGF-β pathway activation. In consequence, neonatal mice that received a VitD+ diet during gestation demonstrated less ECM remodeling upon lung injury, reflected by the reduction of pulmonary α-smooth muscle actin-positive fibroblasts, decreased collagen and elastin deposition, and lower amounts of interstitial tissue in the lung periphery. In conclusion, our findings support strategies that attempt to prevent vitamin D insufficiency during pregnancy as they could impact lung health in the offspring by mitigating inflammatory changes in neonatal lung injury and ameliorating subsequent. remodeling of the developing gas exchange area.

JMJD3 ablation in myeloid cells confers renoprotection in mice with DOCA/salt-induced hypertension

AUTHORS

Ying Gao, Wenqiang Yu, Jinfang Song, Jiayi Nie, Zichan Cui, Shihong Wen, Benquan Liu & Hua Liang

ABSTRACT

Hypertension-induced renal injury is characterized by robust inflammation and tubulointerstitial fibrosis. Jumonji domain containing-3 (JMJD3) is closely linked with inflammatory response and fibrogenesis. Here we examined the effect of myeloid JMJD3 ablation on kidney inflammation and fibrosis in deoxycorticosterone acetate (DOCA)/salt hypertension. Our results showed that JMJD3 is notably induced in the kidneys with hypertensive injury. DOCA/salt stress causes an elevation in blood pressure that was no difference between myeloid specific JMJD3-deficient mice and wild-type control mice. Compared with wild-type control mice, myeloid JMJD3 ablation ameliorated kidney function and injury of mice in response to DOCA/salt challenge. Myeloid JMJD3 ablation attenuated collagen deposition, extracellular matrix proteins expression, and fibroblasts activation in injured kidneys following DOCA/salt treatment. Furthermore, myeloid JMJD3 ablation blunts inflammatory response in injured kidneys after DOCA/salt stress. Finally, myeloid JMJD3 ablation precluded myeloid myofibroblasts activation and protected against macrophages to myofibroblasts transition in injured kidneys. These beneficial effects were accompanied by reduced expression of interferon regulator factor 4. In summary, JMJD3 ablation in myeloid cells reduces kidney inflammation and fibrosis in DOCA salt-induced hypertension. Inhibition of myeloid JMJD3 may be a novel potential therapeutic target for hypertensive nephropathy.