lung

Prenatal vitamin D supplementation mitigates inflammation-related alveolar remodeling in neonatal mice

AUTHORS

Julia Waiden, Motaharehsadat Heydarian, Prajakta Oak, Markus Koschlig, Nona Kamgari, Michael Hagemann, Matthias Wjst, and Anne Hilgendorff

ABSTRACT

The development of chronic lung disease in the neonate, also known as bronchopulmonary dysplasia (BPD), is the most common long-term complication in prematurely born infants. In BPD, the disease-characteristic inflammatory response culminates in nonreversible remodeling of the developing gas exchange area, provoked by the impact of postnatal treatments such as mechanical ventilation (MV) and oxygen treatment. To evaluate the potential of prenatal treatment regimens to modulate this inflammatory response and thereby impact the vulnerability of the lung towards postnatal injury, we designed a multilayered preclinical mouse model. After administration of either prenatal vitamin D enriched (VitD+; 1,500 IU/g food) or deprived (VitD-; <10 IU/Kg) food during gestation in C57B6 mice (the onset of mating until birth), neonatal mice were exposed to hyperoxia (FiO2=0.4) with or without MV for 8h at day 5-7 of life, whereas controls spontaneously breathed room air. Prenatal vitamin D supplementation resulted in a decreased number of monocytes/macrophages in the neonatal lung undergoing postnatal injury together with reduced TGF-β pathway activation. In consequence, neonatal mice that received a VitD+ diet during gestation demonstrated less ECM remodeling upon lung injury, reflected by the reduction of pulmonary α-smooth muscle actin-positive fibroblasts, decreased collagen and elastin deposition, and lower amounts of interstitial tissue in the lung periphery. In conclusion, our findings support strategies that attempt to prevent vitamin D insufficiency during pregnancy as they could impact lung health in the offspring by mitigating inflammatory changes in neonatal lung injury and ameliorating subsequent. remodeling of the developing gas exchange area.

Early extubation to noninvasive respiratory support of former preterm lambs improves long-term respiratory outcomes

AUTHORS

Mar Janna Dahl, Chiara Veneroni, Anna Lavizzari, Sydney Bowen, Haleigh Emerson, Andrew Rebentisch, Elaine Dawson, Kyle Summers, Luke Pettet, Zhengming Wang, Donald M. Null, Bradley A. Yoder, Raffaele L. Dellacà, and Kurt H. Albertine

ABSTRACT

Invasive mechanical ventilation (IMV) and exposure to oxygen-rich gas during early postnatal life are contributing factors for long-term pulmonary morbidities faced by survivors of preterm birth and bronchopulmonary dysplasia. The duration of IMV that leads to long-term pulmonary morbidities is unknown. We compared two durations of IMV (3 h vs. 6 days) during the first 6–7 days of postnatal life in preterm lambs to test the hypothesis that minimizing the duration of IMV will improve long-term respiratory system mechanics and structural outcomes later in life. Moderately preterm (∼85% gestation) lambs were supported by IMV for either 3 h or 6 days before weaning from all respiratory support to become former preterm lambs. Respiratory system mechanics and airway reactivity were assessed monthly from 1 to 6 mo of chronological postnatal age by the forced oscillation technique. Quantitative morphological measurements were made for smooth muscle accumulation around terminal bronchioles and indices of alveolar formation. Minimizing IMV to 3 h led to significantly better (P < 0.05) baseline respiratory system mechanics and less reactivity to methacholine in the first 3 mo of chronological age (2 mo corrected age), significantly less (P < 0.05) accumulation of smooth muscle around peripheral resistance airways (terminal bronchioles), and significantly better (P < 0.05) alveolarization at the end of 5 mo corrected age compared with continuous IMV for 6 days. We conclude that limiting the duration of IMV following preterm birth of fetal lambs leads to better respiratory system mechanics and structural outcomes later in life.

Citrullinated vimentin mediates development and progression of lung fibrosis

AUTHORS

FU JUN LI, RANU SUROLIA, HUASHI LIZHENG WANG, GANG LIU, TEJASWINI KULKARNI, ADRIANA V. F. MASSICANO, JAMES A. MOBLEY, SANTANU MONDAL, JOAO A. DE ANDRADE, SCOTT A. COONROD, PAUL R. THOMPSON, KEITH WILLE, SUZANNE E. LAPI, MOHAMMAD ATHAR, VICTOR J. THANNICKAL, A. BRENT CARTER AND VEENA B. ANTONY

ABSTRACT

The mechanisms by which environmental exposures contribute to the pathogenesis of lung fibrosis are unclear. Here, we demonstrate an increase in cadmium (Cd) and carbon black (CB), common components of cigarette smoke (CS) and environmental particulate matter (PM), in lung tissue from subjects with idiopathic pulmonary fibrosis (IPF). Cd concentrations were directly proportional to citrullinated vimentin (Cit-Vim) amounts in lung tissue of subjects with IPF. Cit-Vim amounts were higher in subjects with IPF, especially smokers, which correlated with lung function and were associated with disease manifestations. Cd/CB induced the secretion of Cit-Vim in an Akt1- and peptidylarginine deiminase 2 (PAD2)–dependent manner. Cit-Vim mediated fibroblast invasion in a 3D ex vivo model of human pulmospheres that resulted in higher expression of CD26, collagen, and α-SMA. Cit-Vim activated NF-κB in a TLR4-dependent fashion and induced the production of active TGF-β1, CTGF, and IL-8 along with higher surface expression of TLR4 in lung fibroblasts. To corroborate ex vivo findings, mice treated with Cit-Vim, but not Vim, independently developed a similar pattern of fibrotic tissue remodeling, which was TLR4 dependent. Moreover, wild-type mice, but not PAD2−/− and TLR4 mutant (MUT) mice, exposed to Cd/CB generated high amounts of Cit-Vim, in both plasma and bronchoalveolar lavage fluid, and developed lung fibrosis in a stereotypic manner. Together, these studies support a role for Cit-Vim as a damage-associated molecular pattern molecule (DAMP) that is generated by lung macrophages in response to environmental Cd/CB exposure. Furthermore, PAD2 might represent a promising target to attenuate Cd/CB-induced fibrosis.

Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury

AUTHORS

Daniel R. Calabrese, Emily Aminian, Benat Mallavia, Fengchun Liu, Simon J. Cleary, Oscar A. Aguilar, Ping Wang, Jonathan Hoover, Jonathan P. Singer, Steven R. Hays, Jeffrey A. Golden, Jasleen Kukreja, Daniel T. Dugger, Mary Nakamura, Lewis L. Lanier, Mark R. Looney, and John R. Greenland

ABSTRACT

Pulmonary ischemia-reperfusion injury (IRI) is a clinical syndrome of acute lung injury that occurs after lung transplantation or remote organ ischemia. IRI causes early mortality and has no effective therapies. While natural killer (NK) cells are innate lymphocytes capable of recognizing injured cells, their roles in acute lung injury are incompletely understood. Here, we demonstrated that NK cells were increased in frequency and cytotoxicity in two different IRI mouse models. We showed that NK cells trafficked to the lung tissue from peripheral reservoirs and were more mature within lung tissue. Acute lung ischemia-reperfusion injury was blunted in a NK cell-deficient mouse strain but restored with adoptive transfer of NK cells. Mechanistically, NK cell NKG2D receptor ligands were induced on lung endothelial and epithelial cells following IRI, and antibody-mediated NK cell depletion or NKG2D stress receptor blockade abrogated acute lung injury. In human lung tissue, NK cells were increased at sites of ischemia-reperfusion injury and activated NK cells were increased in prospectively collected human bronchoalveolar lavage in subjects with severe IRI. These data support a causal role for recipient peripheral NK cells in pulmonary IRI via NK cell NKG2D receptor ligation. Therapies targeting NK cells may hold promise in acute lung injury.