kidney

JMJD3 ablation in myeloid cells confers renoprotection in mice with DOCA/salt-induced hypertension

AUTHORS

Ying Gao, Wenqiang Yu, Jinfang Song, Jiayi Nie, Zichan Cui, Shihong Wen, Benquan Liu & Hua Liang

ABSTRACT

Hypertension-induced renal injury is characterized by robust inflammation and tubulointerstitial fibrosis. Jumonji domain containing-3 (JMJD3) is closely linked with inflammatory response and fibrogenesis. Here we examined the effect of myeloid JMJD3 ablation on kidney inflammation and fibrosis in deoxycorticosterone acetate (DOCA)/salt hypertension. Our results showed that JMJD3 is notably induced in the kidneys with hypertensive injury. DOCA/salt stress causes an elevation in blood pressure that was no difference between myeloid specific JMJD3-deficient mice and wild-type control mice. Compared with wild-type control mice, myeloid JMJD3 ablation ameliorated kidney function and injury of mice in response to DOCA/salt challenge. Myeloid JMJD3 ablation attenuated collagen deposition, extracellular matrix proteins expression, and fibroblasts activation in injured kidneys following DOCA/salt treatment. Furthermore, myeloid JMJD3 ablation blunts inflammatory response in injured kidneys after DOCA/salt stress. Finally, myeloid JMJD3 ablation precluded myeloid myofibroblasts activation and protected against macrophages to myofibroblasts transition in injured kidneys. These beneficial effects were accompanied by reduced expression of interferon regulator factor 4. In summary, JMJD3 ablation in myeloid cells reduces kidney inflammation and fibrosis in DOCA salt-induced hypertension. Inhibition of myeloid JMJD3 may be a novel potential therapeutic target for hypertensive nephropathy.

The Dietary Fermentable Fiber Inulin Alters the Intestinal Microbiome and Improves Chronic Kidney Disease Mineral-Bone Disorder in a Rat Model of CKD

AUTHORS

Annabel Biruete, Neal X. Chen, Corinne E. Metzger, Shruthi Srinivasan, Kalisha O’Neill, Paul B. Fallen, Austin Fonseca, Hannah E. Wilson, Henriette de Loor, Pieter Evenepoel, Kelly S. Swanson, Matthew R. Allen, Sharon M. Moe

ABSTRACT

Background Dietary fiber is important for a healthy diet, but intake is low in CKD patients and the impact this has on the manifestations of CKD-Mineral Bone Disorder (MBD) is unknown.

Methods The Cy/+ rat with progressive CKD was fed a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30 and ~15 % of normal kidney function). We assessed CKD-MBD, cecal microbiota, and serum gut-derived uremic toxins. Two-way ANOVA was used to evaluate the effect of age and inulin diet, and their interaction.

Results In CKD animals, dietary inulin led to changes in microbiota alpha and beta diversity at 30 and 32 weeks, with higher relative abundance of several taxa, including Bifidobacterium and Bacteroides, and lower Lactobacillus. Inulin reduced serum levels of gut-derived uremic toxins, phosphate, and parathyroid hormone, but not fibroblast growth factor-23. Dietary inulin decreased aorta and cardiac calcification and reduced left ventricular mass index and cardiac fibrosis. Bone turnover and cortical bone parameters were improved with inulin; however, bone mechanical properties were not altered.

Conclusions The addition of the fermentable fiber inulin to the diet of CKD rats led to changes in the gut microbiota composition, lowered gut-derived uremic toxins, and improved most parameters of CKD-MBD. Future studies should assess this fiber as an additive therapy to other pharmacologic and diet interventions in CKD.

Significance Statement Dietary fiber has well established beneficial health effects. However, the impact of fermentable dietary fiber on the intestinal microbiome and CKD-MBD is poorly understood. We used an animal model of progressive CKD and demonstrated that the addition of 10% of the fermentable fiber inulin to the diet altered the intestinal microbiota and lowered circulating gut-derived uremic toxins, phosphorus, and parathyroid hormone. These changes were associated with improved cortical bone parameters, lower vascular calcification, and reduced cardiac hypertrophy, fibrosis and calcification. Taken together, dietary fermentable fiber may be a novel additive intervention to traditional therapies of CKD-MBD.

Effects of ferric citrate and intravenous iron sucrose on markers of mineral, bone, and iron homeostasis in a rat model of CKD-MBD

AUTHORS

Annabel Biruete, Corinne E Metzger, Neal X Chen, Elizabeth A Swallow, Curtis Vrabec, Erica L Clinkenbeard, Alexander J Stacy, Shruthi Srinivasan, Kalisha O'Neill, Keith G Avin, Matthew R Allen, Sharon M Moe

ABSTRACT

Background

Anemia and chronic kidney disease-mineral and bone disorder (CKD-MBD) are common and begin early in CKD. Limited studies have concurrently compared the effects of ferric citrate (FC) vs. IV iron on CKD-MBD and iron homeostasis in moderate CKD.

Methods

We tested the effects of 10 weeks of 2% FC vs. IV iron sucrose in rats with moderate CKD (Cy/+ male rat) and untreated normal (NL) littermates. Outcomes included a comprehensive assessment of CKD-MBD, iron homeostasis, and oxidative stress.

Results

CKD rats had azotemia, elevated phosphorus, PTH, and FGF23. Compared to untreated CKD rats, treatment with FC led to lower plasma phosphorus, intact FGF23, and a trend (p = 0.07) towards lower C-terminal FGF23. FC and IV iron equally reduced aorta and heart calcifications to levels similar to NL animals. Compared to NL animals, CKD animals had higher bone turnover, lower trabecular volume, and no difference in mineralization; these were unaffected by either iron treatment. Rats treated with IV iron had cortical and bone mechanical properties similar to NL animals. FC increased transferrin saturation rate compared to untreated CKD and NL rats. Neither iron treatment increased oxidative stress above that of untreated CKD.

Conclusions

Oral FC improved phosphorus homeostasis, some iron-related parameters, and the production and cleavage of FGF23. The intermittent effect of low-dose IV iron sucrose on cardiovascular calcification and bone should be further explored in moderate-to advanced CKD.

Bone volume, mineral density, and fracture risk after kidney transplantation

AUTHORS

Satu Keronen, Leena Martola, Patrik Finne, Inari S. Burton, Xiaoyu F. Tong, Heikki Kröger, Eero Honkanen

ABSTRACT

Background

Disordered mineral metabolism reverses incompletely after kidney transplantation in numerous patients. Post-transplantation bone disease is a combination of pre-existing chronic kidney disease and mineral disorder and often evolving osteoporosis. These two frequently overlapping conditions increase the risk of post-transplantation fractures.

Material and methods

We studied the prevalence of low bone volume in bone biopsies obtained from kidney transplant recipients who were biopsied primarily due to the clinical suspicion of persistent hyperparathyroidism between 2000 and 2015 at the Hospital District of Helsinki and Uusimaa. Parameters of mineral metabolism, results of dual-energy x-ray absorptiometry scans, and the history of fractures were obtained concurrently.

One hundred nine bone biopsies taken at a median of 31 (interquartile range, IQR, 18–70) months after transplantation were included in statistical analysis. Bone turnover was classified as high in 78 (72%) and normal/low in 31 (28%) patients. The prevalence of low bone volume (n = 47, 43%) was higher among patients with low/normal turnover compared to patients with high turnover [18 (58%) vs. 29 (37%), P = 0.05]. Thirty-seven fragility fractures in 23 (21%) transplant recipients corresponding to fracture incidence 15 per 1000 person-years occurred during a median follow-up 9.1 (IQR, 6.3–12.1) years. Trabecular bone volume did not correlate with incident fractures. Accordingly, low bone mineral density at the lumbar spine correlated with low trabecular bone volume, but not with incident fractures. The cumulative corticosteroid dose was an important determinant of low bone volume, but not of incident fractures.

Conclusions

Despite the high prevalence of trabecular bone loss among kidney transplant recipients, the number of fractures was limited. The lack of association between trabecular bone volume and fractures suggests that the bone cortical compartment and quality are important determinants of bone strength and post-transplantation fracture.

Diosmin, a citrus fruit-derived phlebotonic bioflavonoid protects rats from chronic kidney disease-induced loss of bone mass and strength without deteriorating the renal function

AUTHORS

Shivani Sharma, Konica Porwal, Chirag Kulkarni, Subhashis Pal, Praveer Sihota, Saroj Kumar, Mahesh Chandra Tiwari, Roshan Katekar, Ashish Kumar, Priya Singh, Swati Rajput, Rajdeep Guha, Navin Kumar, Jiaur R. Gayen, and Naibedya Chattopadhyay

ABSTRACT

Kidney Disease Improving Global Outcomes (KDIGO) 2017 Clinical Practice Guideline has recommended treatment decisions for patients with chronic kidney disease (CKD) with osteoporosis and/or high risk of fracture. Bisphosphonates, the first-line anti-osteoporosis drugs have the concern of worsening kidney functions. Moreover, despite impaired bone formation in CKD patients, teriparatide, the formation-stimulating drug is not recommended. Thus, there is an urgent need for safe and effective treatment of osteoporosis in CKD patients. Here, in CKD rats, we tested the osteoprotective effect of diosmin, a citrus-derived bioflavonoid used as a phlebotonic in chronic venous insufficiency and has a renoprotective effect. CKD was developed by 5/6th nephrectomy and diosmin at the human equivalent dose (100 mg kg−1) did not advance renal failure but reduced blood pressure to the level of sham control. Fibroblast growth factor-23 and parathyroid hormone were increased in CKD and diosmin suppressed both. CKD reduced bone mass and deteriorated the microarchitecture of trabecular bones, and diosmin maintained both to control levels. Bone formation and strength were impaired in the CKD and diosmin maintained these levels to control levels. Nanoindentation of bone showed that diosmin significantly increased tissue hardness over the control. Diosmetin, the metabolic surrogate of diosmin had comparable pharmacokinetic profiles between the control and CKD groups. Furthermore, diosmetin (50 mg kg−1) protected against CKD-induced bone loss. These data suggest that diosmin and its metabolic surrogate, diosmetin protect against CKD-induced osteopenia. Since diosmin has no renal adverse effect and protected bone mass and strength in CKD rats, we propose assessing its anti-osteoporosis effect in CKD patients.

Clinical Prediction of High-Turnover Bone Disease After Kidney Transplantation

AUTHORS

Satu M. Keronen, Leena A. L. Martola, Patrik Finne, Inari S. Burton, Xiaoyu F. Tong, Heikki P. Kröger & Eero O. Honkanen

ABSTRACT

Bone histomorphometric analysis is the most accurate method for the evaluation of bone turnover, but non-invasive tools are also required. We studied whether bone biomarkers can predict high bone turnover determined by bone histomorphometry after kidney transplantation. We retrospectively evaluated the results of bone biopsy specimens obtained from kidney transplant recipients due to the clinical suspicion of high bone turnover between 2000 and 2015. Bone biomarkers were acquired concurrently. Of 813 kidney transplant recipients, 154 (19%) biopsies were taken at a median of 28 (interquartile range, 18–70) months after engraftment. Of 114 patients included in the statistical analysis, 80 (70%) presented with high bone turnover. Normal or low bone turnover was detected in 34 patients (30%). For discriminating high bone turnover from non-high, alkaline phosphatase, parathyroid hormone, and ionized calcium had the areas under the receiver operating characteristic curve (AUCs) of 0.704, 0.661, and 0.619, respectively. The combination of these markers performed better with an AUC of 0.775. The positive predictive value for high turnover at a predicted probability cutoff of 90% was 95% while the negative predictive value was 35%. This study concurs with previous observations that hyperparathyroidism with or without hypercalcemia does not necessarily imply high bone turnover in kidney transplant recipients. The prediction of high bone turnover can be improved by considering alkaline phosphatase levels, as presented in the logistic regression model. If bone biopsy is not readily available, this model may serve as clinically available tool in recognizing high turnover after engraftment.