Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation

AUTHORS

Yuanyuan Yu, Luyao Wang, Shuaijian Ni, Dijie Li, Jin Liu, Hang Yin Chu, Ning Zhang, Meiheng Sun, Nanxi Li, Qing Ren, Zhenjian Zhuo, Chuanxin Zhong, Duoli Xie, Yongshu Li, Zong-Kang Zhang, Huarui Zhang, Mei Li, Zhenlin Zhang, Lin Chen, Xiaohua Pan, Weibo Xia, Shu Zhang, Aiping Lu, Bao-Ting Zhang & Ge Zhang

ABSTRACT

Sclerostin negatively regulates bone formation by antagonizing Wnt signalling. An antibody targeting sclerostin for the treatment of postmenopausal osteoporosis was approved by the U.S. Food and Drug Administration, with a boxed warning for cardiovascular risk. Here we demonstrate that sclerostin participates in protecting cardiovascular system and inhibiting bone formation via different loops. Loop3 deficiency by genetic truncation could maintain sclerostin’s protective effect on the cardiovascular system while attenuating its inhibitory effect on bone formation. We identify an aptamer, named aptscl56, which specifically targets sclerostin loop3 and use a modified aptscl56 version, called Apc001PE, as specific in vivo pharmacologic tool to validate the above effect of loop3. Apc001PE has no effect on aortic aneurysm and atherosclerotic development in ApoE−/− mice and hSOSTki.ApoE−/− mice with angiotensin II infusion. Apc001PE can promote bone formation in hSOSTki mice and ovariectomy-induced osteoporotic rats. In summary, sclerostin loop3 cannot participate in protecting the cardiovascular system, but participates in inhibiting bone formation.

Graphene oxide/gallium nanoderivative as a multifunctional modulator of osteoblastogenesis and osteoclastogenesis for the synergistic therapy of implant-related bone infection

AUTHORS

Ying Yang, Min Li, Bixia Zhou, Xulei Jiang, Dou Zhang, Hang Luo

ABSTRACT

Currently, implant-associated bacterial infections account for most hospital-acquired infections in patients suffering from bone fractures or defects. Poor osseointegration and aggravated osteolysis remain great challenges for the success of implants in infectious scenarios. Consequently, developing an effective surface modification strategy for implants is urgently needed. Here, a novel nanoplatform (GO/Ga) consisting of graphene oxide (GO) and gallium nanoparticles (GaNPs) was reported, followed by investigations of its in vitro antibacterial activity and potential bacterium inactivation mechanisms, cytocompatibility and regulatory actions on osteoblastogenesis and osteoclastogenesis. In addition, the possible molecular mechanisms underlying the regulatory effects of GO/Ga nanocomposites on osteoblast differentiation and osteoclast formation were clarified. Moreover, an in vivo infectious microenvironment was established in a rat model of implant-related femoral osteomyelitis to determine the therapeutic efficacy and biosafety of GO/Ga nanocomposites. Our results indicate that GO/Ga nanocomposites with excellent antibacterial potency have evident osteogenic potential and inhibitory effects on osteoclast differentiation by modulating the BMP/Smad, MAPK and NF-κB signaling pathways. The in vivo experiments revealed that the administration of GO/Ga nanocomposites significantly inhibited bone infections, reduced osteolysis, promoted osseointegration located in implant-bone interfaces, and resulted in satisfactory biocompatibility. In summary, this synergistic therapeutic system could accelerate the bone healing process in implant-associated infections and can significantly guide the future surface modification of implants used in bacteria-infected environments.

HDAC inhibitor quisinostat prevents estrogen deficiency-induced bone loss by suppressing bone resorption and promoting bone formation in mice

AUTHORS

Shengxuan Sun, Chunmei Xiu, Langhui Chai, Xinyu Chen, Lei Zhang, Qingbai Liu, Jianquan Chen, Haibin Zhou

ABSTRACT

Postmenopausal osteoporosis (PMOP) is a metabolic skeletal disorder characterized by reduced bone mass and impaired bone microarchitecture resulting in increased bone fragility and fracture risk. PMOP is primarily caused by excessive osteoclastogenesis induced by estrogen deficiency. Quisinostat (Qst) is a potent hydroxamate-based second-generation inhibitor of histone deacetylases (HDACs) that can inhibit osteoclast differentiation in vitro, and protect mice from titanium particle-induced osteolysis in vivo. However, whether Qst has therapeutic potential against PMOP remains unclear. In the present study, we evaluated the therapeutic efficacy of Qst on PMOP, using a murine model of ovariectomy (OVX)-induced osteoporosis. We examined the body weight, femur length, and histology of major organs, and showed that Qst did not cause obvious toxicity in mice. Micro-computed tomography and histological analyses revealed that Qst treatment prevented OVX-induced trabecular bone loss both in femurs and vertebrae. Moreover, ELISA showed that Qst decreased the serum levels of the osteoclastic bone resorption marker CTX-1, whereas increased the levels of the osteoblastic bone formation marker Osteocalcin in OVX mice. Consistent with the CTX-1 results, TRAP staining showed that Qst suppressed OVX-induced osteoclastogenesis. Mechanistically, we showed that Qst suppressed RANKL-induced osteoclast differentiation in part by inhibiting p65 nuclear translocation. Collectively, our results demonstrated that Qst can ameliorate estrogen deficiency-induced osteoporosis by inhibiting bone resorption and promoting bone formation in vivo. In summary, our study provided the first preclinical evidence to support Qst as a potential therapeutic agent for PMOP prevention and treatment.

Effect of simvastatin on osteogenesis of the extremity bones in aging rats

AUTHORS

Mengran Wang, Haowei Li, Jiaxin Tang, Yue Xi, Shiyi Chen & Ming Liu

ABSTRACT

Purpose

Simvastatin is a prodrug of the potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. The main purpose of the current study is to assess the accurate function of simvastatin on osteoporosis of extremity bones in aging rats.

Materials and methods

Fifty 15-month-old SD rats were divided into five groups (four simvastatin groups and one control group). The rats in four simvastatin groups were fed with different doses of simvastatin (5, 10, 20, and 40 mg/kg/d, respectively) for 3 months, whereas the rats in control group were fed the equal physiological saline. Calcium (Ca), phosphorus (P), and the lipid spectrum in serum were measured. Biochemical markers of bone metabolism, osteocalcin (OC), and tartrate-resistant acid phosphatase (Trap-5b), were analyzed using ELISA. The content of adipocytes in bone marrow was analyzed by histological staining. Finally, the bone quality of the femur and tibia were evaluated using dual-energy X-ray absorptiometry (DEXA), peri-quantity CT (pQCT), and the 3-point bending biomechanical test.

Results

Simvastatin reduced serum triglycerides (TG), and 10 mg/kg/d of simvastatin significantly reduced the content of adipocytes in bone marrow compared to the control group. However, statistically significant differences between the simvastatin groups and the control group were not found in the CA, P, OC, Trap-5b, or the evaluation indexes of bone quality from DEXA, pQCT, and biomechanical tests.

Conclusion

Simvastatin could not prevent osteoporosis of the extremity bones in aging rats.

Modeling anabolic and anti-resorptive therapies for fracture healing in a mouse model of osteogenesis imperfecta

AUTHORS

Alexandra O’Donohue, Aiken Dao, Justin Bobyn, Craig F Munns, David G Little, Aaron Schindeler

ABSTRACT

Osteogenesis imperfecta (OI) is a genetic bone fragility disorder that features frequent fractures. Bone healing outcomes are contingent on a proper balance between bone formation and resorption, and drugs such as bone morphogenetic proteins (BMPs) and bisphosphonates (BPs) have shown to have utility in modulating fracture repair. While BPs are used for OI to increase BMD and reduce pain and fracture rates, there is little evidence for using BMPs as local agents for fracture healing (alone or with BPs). In this study, we examined wild type and OI mice (Col1a2+/G610C) in a murine tibial open fracture model with (i) surgery only/no treatment, (ii) local BMP-2 (10 µg), or (iii) local BMP-2 and postoperative zoledronic acid (ZA, 0.1 mg/kg total dose). MicroCT reconstructions of healing fractures indicated BMP-2 was less effective in an OI setting, however BMP-2 + ZA led to considerable increases in bone volume (+193% WT, p < 0.001; +154% OI, p < 0.001) and polar moment of inertia (+125% WT, p < 0.01; +248% OI, p < 0.05). Tissue histology revealed a thinning of the neocortex of the callus in BMP-2 treated OI bone, but considerable retention of woven bone in the healing callus with BMP + ZA specimens. These data suggest a cautious approach may be warranted with the sole application of BMP-2 in an OI surgical setting as a bone graft substitute. However, this may be overcome by off-label bisphosphonate administration.

Suppression of osteoclast multinucleation via a posttranscriptional regulation–based spatiotemporally selective delivery system

AUTHORS

Qingqing Wang, Haoli Wang, Huige Yan, Hongsen Tian, Yining Wang, Wei Yu, Zhanqiu Dai, Pengfei Chen, Zhaoming Liu, Ruikang Tang, Chao Jiang, Shunwu Fan, Xin Liu, Xianfeng Lin

ABSTRACT

Redundancy of multinucleated mature osteoclasts, which results from the excessive fusion of mononucleated preosteoclasts (pOCs), leads to osteolytic diseases such as osteoporosis. Unfortunately, the currently available clinical drugs completely inhibit osteoclasts, thus interfering with normal physiological bone turnover. pOC-specific regulation may be more suitable for maintaining bone homeostasis. Here, circBBS9, a previously unidentified circular RNA, was found to exert regulatory effects via the circBBS9/miR-423-3p/Traf6 axis in pOCs. To overcome the long-standing challenge of spatiotemporal RNA delivery to cells, we constructed biomimetic nanoparticles to achieve the pOC-specific targeted delivery of circBBS9. pOC membranes (POCMs) were extracted to camouflage cationic polymer for RNA interference with circBBS9 (POCM-NPs@siRNA/shRNAcircBBS9). POCM-NPs endowed the nanocarriers with improved stability, accurate pOC targeting, fusogenic uptake, and reactive oxygen species–responsive release. In summary, our findings may provide an alternative strategy for multinucleated cell–related diseases that involves restriction of mononucleated cell multinucleation through a spatiotemporally selective delivery system.