simvastatin

Effect of simvastatin on osteogenesis of the extremity bones in aging rats

AUTHORS

Mengran Wang, Haowei Li, Jiaxin Tang, Yue Xi, Shiyi Chen & Ming Liu

ABSTRACT

Purpose

Simvastatin is a prodrug of the potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. The main purpose of the current study is to assess the accurate function of simvastatin on osteoporosis of extremity bones in aging rats.

Materials and methods

Fifty 15-month-old SD rats were divided into five groups (four simvastatin groups and one control group). The rats in four simvastatin groups were fed with different doses of simvastatin (5, 10, 20, and 40 mg/kg/d, respectively) for 3 months, whereas the rats in control group were fed the equal physiological saline. Calcium (Ca), phosphorus (P), and the lipid spectrum in serum were measured. Biochemical markers of bone metabolism, osteocalcin (OC), and tartrate-resistant acid phosphatase (Trap-5b), were analyzed using ELISA. The content of adipocytes in bone marrow was analyzed by histological staining. Finally, the bone quality of the femur and tibia were evaluated using dual-energy X-ray absorptiometry (DEXA), peri-quantity CT (pQCT), and the 3-point bending biomechanical test.

Results

Simvastatin reduced serum triglycerides (TG), and 10 mg/kg/d of simvastatin significantly reduced the content of adipocytes in bone marrow compared to the control group. However, statistically significant differences between the simvastatin groups and the control group were not found in the CA, P, OC, Trap-5b, or the evaluation indexes of bone quality from DEXA, pQCT, and biomechanical tests.

Conclusion

Simvastatin could not prevent osteoporosis of the extremity bones in aging rats.

Intraosseous Injection of Simvastatin in Poloxamer 407 Hydrogel Improves Pedicle-Screw Fixation in Ovariectomized Minipigs

Osteoporosis leads to poor osseointegration and reduces implant stability. Statins have been found to stimulate bone formation, but the bioavailability from oral administration is low. Local application may be more effective at augmenting bone formation and enhancing implant stability. This study was performed to evaluate the efficacy of an intraosseous injection of simvastatin in thermosensitive poloxamer 407 hydrogel to enhance pedicle-screw fixation in calcium-restricted ovariectomized minipigs.