bone formation

Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation

AUTHORS

Yuanyuan Yu, Luyao Wang, Shuaijian Ni, Dijie Li, Jin Liu, Hang Yin Chu, Ning Zhang, Meiheng Sun, Nanxi Li, Qing Ren, Zhenjian Zhuo, Chuanxin Zhong, Duoli Xie, Yongshu Li, Zong-Kang Zhang, Huarui Zhang, Mei Li, Zhenlin Zhang, Lin Chen, Xiaohua Pan, Weibo Xia, Shu Zhang, Aiping Lu, Bao-Ting Zhang & Ge Zhang

ABSTRACT

Sclerostin negatively regulates bone formation by antagonizing Wnt signalling. An antibody targeting sclerostin for the treatment of postmenopausal osteoporosis was approved by the U.S. Food and Drug Administration, with a boxed warning for cardiovascular risk. Here we demonstrate that sclerostin participates in protecting cardiovascular system and inhibiting bone formation via different loops. Loop3 deficiency by genetic truncation could maintain sclerostin’s protective effect on the cardiovascular system while attenuating its inhibitory effect on bone formation. We identify an aptamer, named aptscl56, which specifically targets sclerostin loop3 and use a modified aptscl56 version, called Apc001PE, as specific in vivo pharmacologic tool to validate the above effect of loop3. Apc001PE has no effect on aortic aneurysm and atherosclerotic development in ApoE−/− mice and hSOSTki.ApoE−/− mice with angiotensin II infusion. Apc001PE can promote bone formation in hSOSTki mice and ovariectomy-induced osteoporotic rats. In summary, sclerostin loop3 cannot participate in protecting the cardiovascular system, but participates in inhibiting bone formation.

The Role of Bone Muscle Ring Finger-1 (MuRF1), MuRF2, MuRF3, and Atrogin-1 on Microarchitecture In Vivo

AUTHORS

Vidyani Suryadevara, Connor J. Krehbial, Danielle Halsey & Monte S. Willis

ABSTRACT

Ubiquitin proteasome system was found to contribute to bone loss by regulating bone turnover and metabolism, by modulating osteoblast differentiation and bone formation as well as formation of osteoclasts that contribute to bone resorption. Muscle Ring Finger (MuRF) are novel ubiquitin ligases, which are muscle specific and have not been much implicated in the bone but have been implicated in several human diseases including heart failure and skeletal muscle atrophy. This study is aimed at understanding the role of MuRF1, MuRF2, MuRF3 and Atrogin which are distinct MuRF family proteins in bone homeostasis. Wildtype, heterozygous and homozygous mice of each of the isoforms were used and the bone microarchitecture and mechanical properties were assessed using microCT and biomechanics. MuRF1 depletion was found to alter cortical properties in both males and females, but only trabecular spacing in the females. MuRF2 depletion let to no changes in the cortical and trabecular properties but change in the strain to yield in the females. Depletion of MuRF3 led to decrease in the cortical properties in the females and increase in the trabecular properties in the males. Atrogin depletion was found to reduce cortical properties in both males and females, whereas some trabecular properties were found to be reduced in the females. Each muscle-specific ligase was found to alter the bone structure and mechanical properties in a distinct a sex-dependent manner.

Short Cyclic Regimen with Parathyroid Hormone (PTH) Results in Prolonged Anabolic Effect Relative to Continuous Treatment Followed by Discontinuation in Ovariectomized Rats

AUTHORS

Wei-Ju Tseng, Wonsae Lee, Hongbo Zhao, Yang Liu, Wenzheng Wang, Chantal M. J. de Bakker, Yihan Li, Carlos Osuna, Wei Tong, Luqiang Wang, Xiaoyuan Ma, Ling Qin, X. Sherry Liu

ABSTRACT

Despite the potent effect of intermittent PTH treatment on promoting new bone formation, BMD rapidly decreases upon discontinuation of PTH administration. To uncover the mechanisms behind this adverse phenomenon, we investigated the immediate responses in bone microstructure and bone cell activities to PTH treatment withdrawal and the associated long-term consequences. Unexpectedly, intact female and estrogen-deficient female rats had distinct responses to the discontinuation of PTH treatment. Significant tibial bone loss and bone microarchitecture deterioration occurred in estrogen-deficient rats, with the treatment benefits of PTH completely lost 9 weeks after discontinuation. In contrast, no adverse effect was observed in intact rats, with sustained treatment benefit 9 weeks after discontinuation. Intriguingly, there is an extended anabolic period during the first week of treatment withdrawal in estrogen-deficient rats, during which no significant change occurred in the number of osteoclasts while the number of osteoblasts remained elevated compared to vehicle-treated rats. However, increases in number of osteoclasts and decreases in number of osteoblasts occurred 2 weeks after discontinuation of PTH treatment, leading to significant reduction in bone mass and bone microarchitecture. To leverage the extended anabolic period upon early withdrawal from PTH, a cyclic administration regimen with repeated cycles of on and off PTH treatment was explored. We demonstrated that the cyclic treatment regimen efficiently alleviated the PTH withdrawal-induced bone loss, improved bone mass, bone microarchitecture, and whole-bone mechanical properties, and extended the treatment duration.

Conditional Loss of Ikkα in Sp7/osterix+ Cells Has No Effect on Bone, but Leads to Cell Autonomous, Age-related Loss of Peripheral Fat

AUTHORS

Jennifer L Davis, Nitin K Pokhrel, Linda Cox, Roberta Faccio, Deborah J Veis

ABSTRACT

NF-κB has been reported to both promote and inhibit bone formation. To further explore its role in osteolineage cells, we conditionally deleted IKKα, an upstream kinase required for non-canonical NF-κB activation, using Sp7/Osterix (Osx)-Cre. Surprisingly, we found no effect on either cancellous or cortical bone, even following mechanical loading. However, we noted that IKKα conditional knockout (cKO) mice began to lose body weight after 6 months of age with severe reductions in fat mass in geriatric animals. Low levels of recombination at the IKKα locus were detected in fat pads isolated from 15 month old cKO mice. To determine if these effects were mediated by unexpected deletion of IKKα in peripheral adipocytes, we looked for Osx-Cre-mediated recombination in fat using reporter mice, which showed increasing degrees of reporter activation in adipocytes with age up to 18 months. Since Osx-Cre-driven recombination in peripheral adipocytes increases over time, we conclude that loss of fat in aged cKO mice is most likely caused by progressive deficits of IKKα in adipocytes. To further explore the effect of IKKα loss on fat metabolism, we challenged mice with a high fat diet at 2 months of age, finding that cKO mice gained less weight and showed improved glucose metabolism, compared to littermate controls. Thus, Osx-Cre mediated recombination beyond bone, including within adipocytes, should be considered as a possible explanation for extraskeletal phenotypes, especially in aging and metabolic studies.

Decreased Trabecular Bone Mass in Col22a1-Deficient Mice

AUTHORS

Wenbo Zhao, Philip Wiedemann, Eva Maria Wölfel, Mona Neven, Stephanie Peters, Thomas Imhof, Manuel Koch, Björn Busse, Michael Amling, Thorsten Schinke, Timur Alexander Yorgan

ABSTRACT

The bone matrix is constantly remodeled by the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. Whereas type I collagen is the most abundant bone matrix protein, there are several other proteins present, some of them specifically produced by osteoblasts. In a genome-wide expression screening for osteoblast differentiation markers we have previously identified two collagen-encoding genes with unknown function in bone remodeling. Here we show that one of them, Col22a1, is predominantly expressed in bone, cultured osteoblasts, but not in osteoclasts. Based on this specific expression pattern we generated a Col22a1-deficient mouse model, which was analyzed for skeletal defects by µCT, undecalcified histology and bone-specific histomorphometry. We observed that Col22a1-deficient mice display trabecular osteopenia, accompanied by significantly increased osteoclast numbers per bone surface. In contrast, cortical bone parameters, osteoblastogenesis or bone formation were unaffected by the absence of Col22a1. Likewise, primary osteoblasts from Col22a1-deficient mice did not display a cell-autonomous defect, and they did not show altered expression of Rankl or Opg, two key regulators of osteoclastogenesis. Taken together, we provide the first evidence for a physiological function of Col22a1 in bone remodeling, although the molecular mechanisms explaining the indirect influence of Col22a1 deficiency on osteoclasts remain to be identified.

Gli1+ progenitors mediate bone anabolic function of teriparatide via Hh and Igf signaling

AUTHORS

Yu Shi, Xueyang Liao, James Y.Long, Lutian Yao, Jianquan Chen, Bei Yin, Feng Lou, Guangxu He, Ling Ye, Ling Qin, Fanxin Long

ABSTRACT

Teriparatide is the most widely prescribed bone anabolic drug in the world, but its cellular targets remain incompletely defined. The Gli1+ metaphyseal mesenchymal progenitors (MMPs) are a main source for osteoblasts in postnatal growing mice, but their potential response to teriparatide is unknown. Here, by lineage tracing, we show that teriparatide stimulates both proliferation and osteoblast differentiation of MMPs. Single-cell RNA sequencing reveals heterogeneity among MMPs, including an unexpected chondrocyte-like osteoprogenitor (COP). COP expresses the highest level of Hedgehog (Hh) target genes and the insulin-like growth factor 1 receptor (Igf1r) among all cell clusters. COP also expresses Pth1r and further upregulates Igf1r upon teriparatide treatment. Inhibition of Hh signaling or deletion of Igf1r from MMPs diminishes the proliferative and osteogenic effects of teriparatide. The study therefore identifies COP as a teriparatide target wherein Hh and insulin-like growth factor (Igf) signaling are critical for the osteoanabolic response in growing mice.