Galantamine prevents and reverses neuroimmune induction and loss of adult hippocampal neurogenesis following adolescent alcohol exposure

AUTHORS

Victoria Macht, Ryan Vetreno, Natalie Elchert & Fulton Crews

ABSTRACT

Background

Binge ethanol exposure during adolescence reduces hippocampal neurogenesis, a reduction which persists throughout adulthood despite abstinence. This loss of neurogenesis, indicated by reduced doublecortin+ immunoreactivity (DCX+IR), is paralleled by an increase in hippocampal proinflammatory signaling cascades. As galantamine, a cholinesterase inhibitor, has anti-inflammatory actions, we tested the hypothesis that galantamine would prevent (study 1) or restore (study 2) AIE induction of proinflammatory signals within the hippocampus as well as AIE-induced loss of hippocampal neurogenesis.

Methods

Galantamine (4 mg/kg) or vehicle (saline) was administered to Wistar rats during adolescent intermittent ethanol (AIE; 5.0 g/kg ethanol, 2 days on/2 days off, postnatal day [P] 25-54) (study 1, prevention) or after AIE during abstinent maturation to adulthood (study 2, restoration).

Results

Results indicate AIE reduced DCX+IR and induced cleaved caspase3 (Casp3) in DCX-expressing immature neurons. Excitingly, AIE induction of activated Casp3 in DCX-expressing neurons is both prevented and reversed by galantamine treatment, which also resulted in prevention and restoration of neurogenesis (DCX+IR). Similarly, galantamine prevented and/or reversed AIE induction of proinflammatory markers, including the chemokine (C-C motif) ligand 2 (CCL2), cyclooxygenase-2 (COX-2), and high mobility group box 1 (HMGB1) protein, suggesting that AIE induction of proinflammatory signaling mediates both cell death cascades and hippocampal neurogenesis. Interestingly, galantamine treatment increased Ki67+IR generally as well as increased pan-Trk expression specifically in AIE-treated rats but failed to reverse AIE induction of NADPH-oxidase (gp91phox).

Conclusions

Collectively, our studies suggest that (1) loss of neurogenesis after AIE is mediated by persistent induction of proinflammatory cascades which drive activation of cell death machinery in immature neurons, and (2) galantamine can prevent and restore AIE disruptions in the hippocampal environmental milieu to then prevent and restore AIE-mediated loss of neurogenesis.

Response of the periodontal tissues to β-adrenergic stimulation

AUTHORS

Renata Mendonça Moraes, Florent Elefteriou, Ana Lia Anbinder

ABSTRACT

Aims

Stimulation of β-adrenergic receptors (βAR) in osteoblasts by isoproterenol (ISO) was shown to induce Vascular Endothelial Growth Factor (VEGF) and angiogenesis in long bones. We thus aimed to determine the vascular response of mandibular tissues to βAR stimulation regarding blood vessel formation.

Main methods

Six-week-old wild-type C57BL6 female mice received daily intraperitoneal injections of ISO or phosphate buffered saline (PBS) for 1 month. Hemimandibles and tibias were collected for immunolocalization of endomucin, tyrosine hydroxylase (TH), neuropeptide Y (NPY) and norepinephrine transporter (NET). Moreover, Vegfa, Il-1 β, Il-6, Adrb2 and Rankl mRNA expression was assessed in mandibles and tibias 2 h after PBS or ISO treatment.

Key findings

Despite similar sympathetic innervation and Adrb2 expression between mandibular tissues and tibias, with TH and NPY+ nerve fibers distributed around blood vessels, ISO treatment did not increase endomucin+ vessel area or the total number of endomucin+ vessels in any of the regions investigated (alveolar bone, periodontal ligament, and dental pulp). Consistent with these results, the expression of Vegfα, Il-6, Il-1β, and Rankl in the mandibular molar region did not change following ISO administration. We detected high expression of NET by immunofluorescence in mandible alveolar osteoblasts, osteocytes, and periodontal ligament fibroblasts, in addition to significantly higher Net expression by qPCR compared to the tibia from the same animals.

Significance

These findings indicate a differential response to βAR agonists between mandibular and tibial tissues, since the angiogenic potential of sympathetic outflow observed in long bones is absent in periodontal tissues.

Genome size in cyclopoid copepods (Copepoda: Cyclopoida): chromatin diminution as a hypothesized mechanism of evolutionary constraint

AUTHORS

Emilly Schutt, Maria Hołyńska, Grace A Wyngaard

ABSTRACT

Genome size is a fundamental property of organisms that impacts their molecular evolution and life histories. The hypothesis that somatic genome sizes in copepods in the order Cyclopoida are small and evolutionary constrained relative to those in the order Calanoida was proposed 15 years ago. Since then, the number of estimates has almost doubled and the taxon sampling has broadened. Here we add 14 new estimates from eight genera of freshwater cyclopoids that vary from 0.2 to 6.6 pg of DNA per nucleus in the soma; all except one are 2.0 pg DNA per nucleus or smaller. This new sample adds to the pattern of genome size in copepods and is remarkably similar to the distribution on which the original hypothesis was based, as well as those of subsequently published estimates. Embryonic chromatin diminution, during which large portions of DNA are excised from the presomatic cell lineage, is reported in Paracyclops affinis (G.O. Sars, 1863). This diminution results in a somatic genome that is one half the size of the germline genome. When the sizes of the germline genomes carried in presomatic cells of cyclopoid species that possess chromatin diminution are considered, the prediminuted germline genome sizes of cyclopoid embryos overlap with the distribution of calanoid somatic genome sizes, supporting the hypothesis that chromatin diminution has functioned as a mechanism to constrain somatic nuclear DNA content in cyclopoid copepods. Geographically based variation in genome size among populations is also reviewed.

Neutralizing antibody evasion and transduction with purified extracellular vesicle-enveloped AAV vectors.

AUTHORS

Dr. Ming Cheng, Ms. Laura Dietz, Dr. Yi Gong, Dr. Florian Eichler, Ms. Josette Nammour, Miss Carrie Ng, Dr. Dirk Grimm, and Dr. Casey A Maguire

ABSTRACT

Adeno-associated virus (AAV) is classified as a non-enveloped DNA virus. However, several years ago we discovered that in media of packaging cells producing recombinant AAV vectors, AAV capsids can associate with the interior and surface of extracellular vesicles (EVs), sometimes referred to as exosomes. Since then we and others have demonstrated that exosome-enveloped AAV, exo-AAV, can enhance transduction in vivo as well as evade neutralizing antibodies. While promising, these data were generated with differential centrifugation to pellet the exo-AAV. This method results in a heterogeneous mixture of exo-AAV, co-precipitating proteins, as well as free AAV capsids. To define the properties of exo-AAV more accurately, here we used a density gradient method to purify exo-AAV. We next performed head-to-head comparisons of standard AAV1, differential centrifuged exo-AAV1, and gradient purified exo-AAV1 for antibody evasion and transgene expression in the murine brain. We found purified exo-AAV1 to be more resistant to neutralizing antibodies than the other AAV preparations. Direct intracranial injection of purified exo-AAV1 into mice resulted in robust transduction, which transduced a larger area of brain than standard AAV1. We also identified the recently described membrane-associated accessory protein (MAAP) by mass spectrometry of purified exo-AAV1 preparations. Finally, we used a scalable method, size-exclusion chromatography to isolate exo-AAV1, and demonstrated functional transduction in cultured cells and increased antibody resistance. Together, these data suggest that higher purity exo-AAV will have beneficial characteristics for gene delivery and also may lead to mechanistic insights into the incorporation of AAV into EVs.

Regional Gene Therapy with Transduced Human Cells: The Influence of “Cell Dose” on Bone Repair

AUTHORS

Hansel Ihn, Hyunwoo Kang, Brenda Iglesias, Osamu Sugiyama, Amy Tang, Roger Hollis, Sofia Bougioukli, Tautis Skorka, Sanghyun Park, Donald Longjohn, Daniel A. Oakes, Donald B. Kohn, and Jay R. Lieberman

ABSTRACT

Regional gene therapy using a lentiviral vector containing the BMP-2 complementary DNA (cDNA) has been shown to heal critical-sized bone defects in rodent models. An appropriate “cellular dose” needs to be defined for eventual translation into human trials. The purpose of this study was to evaluate bone defect healing potential and quality using three different doses of transduced human bone marrow cells (HBMCs). HBMCs were transduced with a lentiviral vector containing either BMP-2 or green fluorescent protein (GFP). All cells were loaded onto compression-resistant matrices and implanted in the bone defect of athymic rats. Treatment groups included femoral defects that were treated with a low-dose (1 × 106 cells), standard-dose (5 × 106 cells), and high-dose (1.5 × 107 cells) HBMCs transduced with lentiviral vector containing BMP-2 cDNA. The three control groups were bone defects treated with HBMCs that were either nontransduced or transduced with vector containing GFP. All animals were sacrificed at 12 weeks. The bone formed in each defect was evaluated with plain radiographs, microcomputed tomography (microCT), histomorphometric analysis, and biomechanical testing. Bone defects treated with higher doses of BMP-2-producing cells were more likely to have healed (6/14 of the low-dose group; 12/14 of the standard-dose group; 14/14 of the high-dose group; χ2(2) = 15.501, p < 0.001). None of the bone defects in the control groups had healed. Bone defects treated with high dose and standard dose of BMP-2-producing cells consistently outperformed those treated with a low dose in terms of bone formation, as assessed by microCT and histomorphometry, and biomechanical parameters. However, statistical significance was only seen between defects treated with high dose and low dose. Larger doses of BMP-2-producing cells were associated with a higher likelihood of forming heterotopic ossification. Femurs treated with a standard- and high-dose BMP-2-producing cells demonstrated similar healing and biomechanical properties. Increased doses of BMP-2 delivered through higher cell doses have the potential to heal large bone defects. Adapting regional gene therapy for use in humans will require a balance between promoting bone repair and limiting heterotopic ossification.

Adipogenic Differentiation Alters Properties of Vascularized Tissue-Engineered Skeletal Muscle

AUTHORS

Francisca M. Acosta, Kennedy K. Howland, Katerina Stojkova, Elizabeth Hernandez, Eric M. Brey, and Christopher R. Rathbone

ABSTRACT

Advances in the engineering of comprehensive skeletal muscle models in vitro will improve drug screening platforms and can lead to better therapeutic approaches for the treatment of skeletal muscle injuries. To this end, a vascularized tissue-engineered skeletal muscle (TE-SkM) model that includes adipocytes was developed to better emulate the intramuscular adipose tissue that is observed in skeletal muscles of patients with diseases such as diabetes. Muscle precursor cells cultured with and without microvessels derived from adipose tissue (microvascular fragments) were used to generate TE-SkM constructs, with and without a microvasculature, respectively. TE-SkM constructs were treated with adipogenic induction media to induce varying levels of adipogenesis. With a delayed addition of induction media to allow for angiogenesis, a robust microvasculature in conjunction with an increased content of adipocytes was achieved. The augmentation of vascularized TE-SkM constructs with adipocytes caused a reduction in maturation (compaction), mechanical integrity (Young's modulus), and myotube and vessel alignment. An increase in basal glucose uptake was observed in both levels of adipogenic induction, and a diminished insulin-stimulated glucose uptake was associated with the higher level of adipogenic differentiation and the greater number of adipocytes.