teeth

AAV1.tMCK.NT-3 gene therapy improves phenotype in Sh3tc2−/− mouse model of Charcot–Marie–Tooth Type 4C

AUTHORS

Burcak Ozes , Lingying Tong , Kyle Moss , Morgan Myers , Lilye Morrison , Zayed Attia , Zarife Sahenk

ABSTRACT

Charcot–Marie–Tooth Type 4C (CMT4C) is associated with mutations in the SH3 domain and tetratricopeptide repeats 2 (SH3TC2) gene, primarily expressed in Schwann cells (SCs). Neurotrophin-3 (NT-3) is an important autocrine factor for SC survival and differentiation, and it stimulates neurite outgrowth and myelination. In this study, scAAV1.tMCK.NT-3 was delivered intramuscularly to 4-week-old Sh3tc2−/− mice, a model for CMT4C, and treatment efficacy was assessed at 6-month post-gene delivery. Efficient transgene production was verified with the detection of NT-3 in serum from the treated cohort. NT-3 gene therapy improved functional and electrophysiological outcomes including rotarod, grip strength and nerve conduction velocity. Qualitative and quantitative histopathological studies showed that hypomyelination of peripheral nerves and denervated status of neuromuscular junctions at lumbrical muscles were also improved in the NT-3-treated mice. Morphometric analysis in mid-sciatic and tibial nerves showed treatment-induced distally prominent regenerative activity in the nerve and an increase in the estimated SC density. This indicates that SC proliferation and differentiation, including the promyelination stage, are normal in the Sh3tc2−/− mice, consistent with the previous findings that Sh3tc2 is not involved in the early stages of myelination. Moreover, in size distribution histograms, the number of myelinated axons within the 3- to 6-µm diameter range increased, suggesting that treatment resulted in continuous radial growth of regenerating axons over time. In conclusion, this study demonstrates the efficacy of AAV1.NT-3 gene therapy in the Sh3tc2−/− mouse model of CMT4C, the most common recessively inherited demyelinating CMT subtype.

Microcin C7-laden modified gelatin based biocomposite hydrogel for the treatment of periodontitis

AUTHORS

Shuo Zhou, Di Miao, Jinpeng Wen, Qianqian Zhang, Datao Hu, Na Liu, Jinyang Li, Yifan Zhang, Ke Wang, Yue Chen

ABSTRACT

Periodontitis is an oral disease with the highest incidence globally, and plaque control is the key to its treatment. In this study, Microcin C7 was used to treat periodontitis, and a novel injectable temperature-sensitive sustained-release hydrogel was synthesized as an environmentally sensitive carrier for drug delivery. First, modified gelatin was formed from gelatin and glycidyl methacrylate. Then, Microcin C7-laden hydrogel was formed from cross-linking with double bonds between modified gelatin, N-isopropyl acrylamide, and 2-Methacryloyloxyethyl phosphorylcholine through radical polymerization, and the model drug Microcin C7 was loaded by electrostatic adsorption. The hydrogel has good temperature sensitivity, self-healing, and injectable properties. In vitro results showed that the hydrogel could slowly and continuously release Microcin C7 with good biocompatibility and biodegradability, with a remarkable antibacterial effect on Porphyromonas gingivalis. It also confirmed the antibacterial and anti-inflammatory effects of Microcin C7-laden hydrogel in a periodontitis rat model. The results showed that Microcin C7-laden hydrogel is a promising candidate for local drug delivery systems in periodontitis.