space flight

Anti-RANKL monoclonal antibody and bortezomib prevent mechanical unloading-induced bone loss

AUTHORS

Yi Ding, Yu Cui, Xi Yang, Xiaolu Wang, Guangzhao Tian, Jiang Peng, Bo Wu, Li Tang, Chun-Ping Cui & Lingqiang Zhang

ABSTRACT

Introduction

Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. It is essential to develop therapeutic strategies to combat the bone loss occurring in people afflicted with disuse atrophy on earth as well as in astronauts in space, especially during prolonged missions. Although several drugs have been demonstrated for treating postmenopausal osteoporosis or bone-related diseases, their effects on microgravity-induced bone loss are still unclear.

Materials and methods

Here, we employed the hindlimb-unloading (HLU) tail suspension model and compared the preventive efficiencies of five agents including alendronate (ALN), raloxifene (Rox), teriparatide (TPTD), anti-murine RANKL monoclonal antibody (anti-RANKL) and proteasome inhibitor bortezomib (Bzb) on mechanical unloading-induced bone loss. Bone mineral density (BMD) was measured by quantitative computed tomography. The osteoblastic and osteoclastic activity were measured by serum ELISA, histology analysis, and histomorphometric analysis.

Results

Compared to the control, ALN and anti-RANKL antibody could restore bone mass close to sham levels by inhibiting bone resorption. Bzb could increase the whole bone mass and strength by inhibiting bone resorption and promoting bone formation simultaneously. Meanwhile, Rox did not affect bone loss caused by HLU. TPTD stimulated cortical bone formation but the total bone mass was not increased significantly.

Conclusions

We demonstrated for the first time that anti-RANKL antibody and Bzb had a positive effect on preventing mechanical unloading-induced bone loss. This finding puts forward the potential use of anti-RANKL and Bzb on bone loss therapies or prophylaxis of astronauts in spaceflight.

Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice

During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions.