osteogenic

Evaluation of osteogenic potential of Cissus quadrangularis on mandibular alveolar ridge distraction

AUTHORS

Alaa Abdelqader Altaweel, Abdel Aziz Baiomy Abdullah Baiomy, Hazem Shawky Shoshan, Hisham Abbas, Ahmed Abdel-Shakour Abdel-Hafiz, Abd El-Hamid Gaber, Amr Abdelfatah Zewail & Marwa A. M. Elshiekh

ABSTRACT

Background

This randomized clinical trial was designed to evaluate osteogenic potential of Cissus quadrangularis in alveolar distraction to facilitate implant installation.

Material and methods

Twenty patients with atrophic ridge were treated by alveolar distraction. After completing distractor activation, patients were randomly divided into two equal groups according to administered drug (placebo and Cissus quadrangularis group). After a consolidation period, distractors were removed and implants were inserted. Clinical evaluation was done to assess wound healing, and distractor and implant stability. Histological evaluation was performed at time of implant insertion. Radiographic evaluation was performed to assess bone volume and density after distraction, as well as, density and bone loss around implant.

Results

Radiographic and histological results showed that bone formation and maturation of study group were faster than that of control group. There was a significant increased bone density in distracted area and around implant in study group than control group. A significant bone loss at end of consolidation period, and around implant at end of the study was reported in control group than study group.

Conclusion

Cissus quadrangularis administration during the consolidation period is associated with increased osteogenic potential of distracted bone. The histological and radiographic findings of current study proved that Cissus quadrangularis not only enhances rate of new bone formation, but also bone density to withstand the biomechanical requirements of implant placement in a shorter time.

Flexible Osteogenic Glue as an All-In-One Solution to Assist Fracture Fixation and Healing

AUTHORS

Jincheng Tang, Kun Xi, Hao Chen, Lingjun Wang, Dongya Li, Yun Xu, Tianwen Xin, Liang Wu, Yidi Zhou, Jiang Bian, Zhengwei Cai, Huilin Yang, Lianfu Deng, Yong Gu, Wenguo Cui, Liang Chen

ABSTRACT

Osteogenic glue that reproduces the natural bone composition represents the final frontier of orthopedic adhesives with the potential to revolutionize surgical strategies against comminuted fractures. However, it is difficult to achieve an all-in-one formula, which could provide flexible and reliable adhesiveness while avoiding interfering with or even promoting the healing of glued fractures. Herein, an osteogenic glue characterized by inorganic-in-organic integration between amine-modified mesoporous bioactive glass nanoparticles (AMBGN) and bioadhesive gelatin-dextran network (GelDex) is introduced as an all-in-one tool to flexibly adhere and splice bone fragments and subsequently guide fracture healing during degradation. Relying on such integration, a 4-fold improvement in cohesiveness is presented, followed by a nearly 5-fold enhancement in adhesive strength in ex vivo porcine bone samples. The reversible and re-adjustable adhesiveness also enables glue to effectively splice intricate fragments from highly comminuted fractures in the rabbit radius in an in vivo environment. Moreover, well-preserved organic–inorganic integrity during degradation of the glue guides sustained interfacial osteogenesis and achieve satisfying healing outcomes in glued fractures, as observed by the 2-fold improvement in biomechanical and radiological performance compared with commercially available cyanoacrylate adhesives. The current findings propose an all-in-one solution for the fixation of bone fragments during surgery.

N-cadherin Regulation of Bone Growth and Homeostasis Is Osteolineage Stage–Specific

N-cadherin inhibits osteogenic cell differentiation and canonical Wnt/β-catenin signaling in vitro. However, in vivo both conditional Cdh2 ablation and overexpression in osteoblasts lead to low bone mass. We tested the hypothesis that N-cadherin has different effects on osteolineage cells depending upon their differentiation stage. Embryonic conditional osteolineage Cdh2 deletion in mice results in defective growth, low bone mass, and reduced osteoprogenitor number.