obesity

Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer’s Disease mouse model

AUTHORS

Kathleen R. Walter, Dane K. Ricketts, Brandon H. Presswood, Susan M. Smith & Sandra M. Mooney

ABSTRACT

Background: Prenatal alcohol exposure (PAE) causes behavioral deficits and increases risk of metabolic diseases. Alzheimer’s Disease (AD) is a neurodegenerative disease that has a higher risk in adults with metabolic diseases. Both present with persistent neuroinflammation.

Objectives: We tested whether PAE exacerbates AD-related cognitive decline in a mouse model (3xTg-AD; presenilin/amyloid precursor protein/tau), and assessed associations among cognition, metabolic impairment, and microglial reactivity.

Methods: Alcohol-exposed (ALC) pregnant 3xTg-AD mice received 3 g/kg alcohol from embryonic day 8.5–17.5. We evaluated recognition memory and associative memory (fear conditioning) in 8–10 males and females per group at 3 months of age (3mo), 7mo, and 11mo, then assessed glucose tolerance, body composition, and hippocampal microglial activation at 12mo.

Results: ALC females had higher body weights than controls from 5mo (p < .0001). Controls showed improved recognition memory at 11mo compared with 3mo (p = .007); this was not seen in ALC mice. Older animals froze more during fear conditioning than younger, and ALC mice were hyper-responsive to the fear-related cue (p = .017). Fasting blood glucose was lower in ALC males and higher in ALC females than controls. Positive associations occurred between glucose and fear-related context (p = .04) and adiposity and fear-related cue (p = .0002) in ALC animals. Hippocampal microglial activation was higher in ALC than controls (p < .0001); this trended to correlate with recognition memory.

Conclusions: ALC animals showed age-related cognitive impairments that did not interact with AD risk but did correlate with metabolic dysfunction and somewhat with microglial activation. Thus, metabolic disorders may be a therapeutic target for people with FASDs.

Targeting adipocytic discoidin domain receptor 2 impedes fat gain while increasing bone mass

AUTHORS

Xiaoyu Yang, Jing Li, Liting Zhao, Yazhuo Chen, Zhijun Cui, Taotao Xu, Xu Li, Shufang Wu & Yan Zhang

ABSTRACT

Obesity is closely associated with low-bone-mass disorder. Discoidin domain receptor 2 (DDR2) plays essential roles in skeletal metabolism, and is probably involved in fat metabolism. To test the potential role of DDR2 in fat and fat-bone crosstalk, Ddr2 conditional knockout mice (Ddr2Adipo) were generated in which Ddr2 gene is exclusively deleted in adipocytes by Adipoq Cre. We found that Ddr2Adipo mice are protected from fat gain on high-fat diet, with significantly decreased adipocyte size. Ddr2Adipo mice exhibit significantly increased bone mass and mechanical properties, with enhanced osteoblastogenesis and osteoclastogenesis. Marrow adipocyte is diminished in the bone marrow of Ddr2Adipo mice, due to activation of lipolysis. Fatty acid in the bone marrow was reduced in Ddr2Adipo mice. RNA-Seq analysis identified adenylate cyclase 5 (Adcy5) as downstream molecule of Ddr2. Mechanically, adipocytic Ddr2 modulates Adcy5-cAMP-PKA signaling, and Ddr2 deficiency stimulates lipolysis and supplies fatty acid for oxidation in osteoblasts, leading to the enhanced osteoblast differentiation and bone mass. Treatment of Adcy5 specific inhibitor abolishes the increased bone mass gain in Ddr2Adipo mice. These observations establish, for the first time, that Ddr2 plays an essential role in the crosstalk between fat and bone. Targeting adipocytic Ddr2 may be a potential strategy for treating obesity and pathological bone loss simultaneously.