loading

Blocking CCN2 Reduces Established Bone Loss Induced by Prolonged Intense Loading by Increasing Osteoblast Activity in Rats

AUTHORS

Alex G Lambi, Michele Y Harris, Mamta Amin, Patrice G Joiner, Brendan A Hilliard, Soroush Assari, Steven N Popoff, Mary F Barbe

ABSTRACT

We have an operant model of reaching and grasping in which detrimental bone remodeling is observed rather than beneficial adaptation when rats perform a high-repetition, high-force (HRHF) task long term. Here, adult female Sprague–Dawley rats performed an intense HRHF task for 18 weeks, which we have shown induces radial trabecular bone osteopenia. One cohort was euthanized at this point (to assay the bone changes post task; HRHF-Untreated). Two other cohorts were placed on 6 weeks of rest while being simultaneously treated with either an anti-CCN2 (FG-3019, 40 mg/kg body weight, ip; twice per week; HRHF-Rest/anti-CCN2), or a control IgG (HRHF-Rest/IgG), with the purpose of determining which might improve the trabecular bone decline. Results were compared with food-restricted control rats (FRC). MicroCT analysis of distal metaphysis of radii showed decreased trabecular bone volume fraction (BV/TV) and thickness in HRHF-Untreated rats compared with FRCs; responses improved with HRHF-Rest/anti-CCN2. Rest/IgG also improved trabecular thickness but not BV/TV. Histomorphometry showed that rest with either treatment improved osteoid volume and task-induced increases in osteoclasts. Only the HRHF-Rest/anti-CCN2 treatment improved osteoblast numbers, osteoid width, mineralization, and bone formation rate compared with HRHF-Untreated rats (as well as the latter three attributes compared with HRHF-Rest/IgG rats). Serum ELISA results were in support, showing increased osteocalcin and decreased CTX-1 in HRHF-Rest/anti-CCN2 rats compared with both HRHF-Untreated and HRHF-Rest/IgG rats. These results are highly encouraging for use of anti-CCN2 for therapeutic treatment of bone loss, such as that induced by chronic overuse. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Estrogen Receptor beta mediates decreased occlusal loading induced inhibition of chondrocyte maturation in female mice

Objective Temporomandibular joint (TMJ) disorders predominantly afflict women, suggesting that estrogen may play a role in the disease process. Defects in mechanical loading-induced TMJ remodeling are believed to be a major etiological factor in TMJ degenerative disease. Previously, we found that, decreased occlusal loading caused a significant decrease in early chondrocyte maturation markers (Sox9 and Col 2) in female, but not male, C57BL/6 wild type mice (1). The goal of this study was to examine the role of Estrogen Receptor (ER) beta in mediating these effects.

The Role of Muscle Loading on Bone (Re)modeling at the Developing Enthesis

Authors

Alexander M. Tatara, Justin H. Lipner, Rosalina Das, H. Mike Kim, Nikunj Patel, Eleni Ntouvali, Matthew J. Silva, Stavros Thomopoulos

Abstract

Muscle forces are necessary for the development and maintenance of a mineralized skeleton. Removal of loads leads to malformed bones and impaired musculoskeletal function due to changes in bone (re)modeling. In the current study, the development of a mineralized junction at the interface between muscle and bone was examined under normal and impaired loading conditions. Unilateral mouse rotator cuff muscles were paralyzed using botulinum toxin A at birth. Control groups consisted of contralateral shoulders injected with saline and a separate group of normal mice. It was hypothesized that muscle unloading would suppress bone formation and enhance bone resorption at the enthesis, and that the unloading-induced bony defects could be rescued by suppressing osteoclast activity. In order to modulate osteoclast activity, mice were injected with the bisphosphonate alendronate. Bone formation was measured at the tendon enthesis using alizarin and calcein fluorescent labeling of bone surfaces followed by quantitative histomorphometry of histologic sections. Bone volume and architecture was measured using micro computed tomography. Osteoclast surface was determined via quantitative histomorphometry of tartrate resistant acid phosphatase stained histologic sections. Muscle unloading resulted in delayed initiation of endochondral ossification at the enthesis, but did not impair bone formation rate. Unloading led to severe defects in bone volume and trabecular bone architecture. These defects were partially rescued by suppression of osteoclast activity through alendronate treatment, and the effect of alendronate was dose dependent. Similarly, bone formation rate was increased with increasing alendronate dose across loading groups. The bony defects caused by unloading were therefore likely due to maintained high osteoclast activity, which normally decreases from neonatal through mature timepoints. These results have important implications for the treatment of muscle unloading conditions such as neonatal brachial plexus palsy, which results in shoulder paralysis at birth and subsequent defects in the rotator cuff enthesis and humeral head.

Link To Article

http://dx.doi.org/10.1371/journal.pone.0097375