fibroblasts

Antifibrotic Effects of (−)-Epicatechin on High Glucose Stimulated Cardiac Fibroblasts

AUTHORS

Alejandra Garate-Carrillo, Israel Ramirez-Sanchez, Justina Nguyen, Julisa Gonzalez, Guillermo Ceballos, and Francisco Villarreal

ABSTRACT

Cardiac fibrosis is one of the hallmarks of a diabetic cardiomyopathy. When activated, cardiac fibroblasts (CFs) increase the production of extracellular matrix proteins. Transforming growth factor (TGF)-β1 is known to mediate cardiac fibrosis through the SMAD pathway. High glucose (HG = 25 mM) cell culture media can activate CFs using TGF-β1. There is a need to identify effective antifibrotic agents. Studies in animals indicate that treatment with (−)-epicatechin (Epi) appears capable of reducing myocardial fibrosis. Epi binds to G-protein coupled estrogen receptor (GPER) and activates downstream pathways. We evaluated the potential of Epi to mitigate the development of a profibrotic phenotype in HG stimulated CFs. CF primary cultures were isolated from young male rats and were exposed for up to 48 h HG media and treated with vehicle or 1 μM Epi. Relevant profibrotic end points were measured by the use of various biochemical assays. HG exposure of CFs increased TGF-β1 protein levels by ∼15%, fibronectin ∼25%, urea levels ∼60%, proline incorporation ∼70%, and total collagen ∼15%. Epi treatment was able to significantly block HG induced increases in TGF-β1, fibronectin, urea, proline, and total collagen protein levels. GPER levels were reduced by HG and restored in CFs treated with Epi an effect associated with the activation (i.e., phosphorylation) of c-Src. Epi treatment also reverted SMAD levels. Altogether, results demonstrate that CFs cultured in HG acquire a profibrotic phenotype, which is blocked by Epi an effect, likely mediated at least, in part, by GPER effects on the SMAD/TGF-β1 pathway.

Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer

AUTHORS

Estefania Labanca, Jun Yang, Peter D.A. Shepherd, Xinhai Wan, Michael W. Starbuck, Leah D. Guerra, Nicolas Anselmino, Juan A. Bizzotto, Jiabin Dong, Arul M. Chinnaiyan, Murali K. Ravoori, Vikas Kundra, Bradley M. Broom, Paul G. Corn, Patricia Troncoso, Geraldine Gueron, Christopher J. Logothethis, Nora M. Navone

ABSTRACT

Background

No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation.

Objective

To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases.

Design, setting, and participants

In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted.

Outcome measurements and statistical analysis

In mice, bone metastases (chi-square/Fisher’s test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher’s test).

Results and limitations

FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; β, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; β, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005).

Conclusions

FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa.

Patient summary

We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.

Antifibrotic Effects of (−)-Epicatechin on High Glucose Stimulated Cardiac Fibroblasts

AUTHORS

Alejandra Garate-Carrillo, Israel Ramirez-Sanchez, Justina Nguyen, Julisa Gonzalez, Guillermo Ceballos, and Francisco Villarreal

ABSTRACT

Cardiac fibrosis is one of the hallmarks of a diabetic cardiomyopathy. When activated, cardiac fibroblasts (CFs) increase the production of extracellular matrix proteins. Transforming growth factor (TGF)-β1 is known to mediate cardiac fibrosis through the SMAD pathway. High glucose (HG = 25 mM) cell culture media can activate CFs using TGF-β1. There is a need to identify effective antifibrotic agents. Studies in animals indicate that treatment with (−)-epicatechin (Epi) appears capable of reducing myocardial fibrosis. Epi binds to G-protein coupled estrogen receptor (GPER) and activates downstream pathways. We evaluated the potential of Epi to mitigate the development of a profibrotic phenotype in HG stimulated CFs. CF primary cultures were isolated from young male rats and were exposed for up to 48 h HG media and treated with vehicle or 1 μM Epi. Relevant profibrotic end points were measured by the use of various biochemical assays. HG exposure of CFs increased TGF-β1 protein levels by ∼15%, fibronectin ∼25%, urea levels ∼60%, proline incorporation ∼70%, and total collagen ∼15%. Epi treatment was able to significantly block HG induced increases in TGF-β1, fibronectin, urea, proline, and total collagen protein levels. GPER levels were reduced by HG and restored in CFs treated with Epi an effect associated with the activation (i.e., phosphorylation) of c-Src. Epi treatment also reverted SMAD levels. Altogether, results demonstrate that CFs cultured in HG acquire a profibrotic phenotype, which is blocked by Epi an effect, likely mediated at least, in part, by GPER effects on the SMAD/TGF-β1 pathway.

Mechanically stable surface-hydrophobilized chitosan nanofibrous barrier membranes for guided bone regeneration

The use of chitosan based nanofiber membranes in guided bone regeneration (GBR) is limited by its uncontrolled swelling and mechanical instability in aqueous environments. This paper describes the significantly improved stability and properties of surface butyrylated chitosan nanofiber (BCSNF) membranes that greatly enhance their potential in GBR.