Osteoporosis

Hydroxyurea blunts mitochondrial energy metabolism and osteoblast and osteoclast differentiation exacerbating trabecular bone loss in sickle cell mice

AUTHORS

Ashish Kumar Tripathi, Sadaf Dabeer, Jun Song, Tatyana Vikulina, Susanne Roser-Page, Jessica A. Alvarez, David. R. Archer, M. Neale Weitzmann

ABSTRACT

Sickle cell disease (SCD) is a severe hematological disorder characterized by erythrocyte sickling that causes significant morbidity and mortality. Skeletal complications of SCD include a high incidence of bone loss, especially in vertebrae, leading to fragility fractures that contribute to disease burden. Whether hydroxyurea (HU), a front-line therapy for SCD ameliorates bone disease has not been established. To investigate HU action on SCD-related vertebral defects, we used HU-treated “Townes” mice, an SCD animal model and performed high-resolution micro-computed tomography (µCT) imaging to resolve bone volume and micro-architectural structure of cortical and trabecular bone, the two major compartments contributing to bone mass and strength. Our data revealed that cortical bone was significantly diminished in the vertebrae of skeletally mature (representing adults) and immature (representing children) SCD mice, while only mature mice lost trabecular bone mass. Administration of HU ameliorated cortical bone loss in mature SCD mice, but paradoxically promoted trabecular bone decline in both groups. We further investigated the mechanisms of HU action in wild-type C57BL6/J mice. HU caused dose-dependent trabecular bone loss due to diminished osteoclast and osteoblast function, indicative of a low bone turnover state. Mechanistic investigations in vitro revealed that HU impeded osteoblast-progenitor proliferation and early differentiation, and diminished osteoclastogenic cytokine production, blunting osteoclast formation as well as the activity of mature osteoclasts. HU further, suppressed mitochondrial, but not glycolytic energy metabolism in both differentiating osteoblasts and differentiated osteoclasts. Collectively, these findings reveal that despite ameliorating cortical bone loss, HU inhibits trabecular bone formation and resorption, by suppressing mitochondrial energy metabolism and blunting the differentiation and/or activity of osteoblasts and osteoclasts. Together HU drives a low bone turnover state culminating in trabecular bone loss. Further investigation into HU’s impact on bone in SCD patients is warranted for understanding and managing skeletal complications in this population.

Epimedin A inhibits the PI3K/AKT/NF-κB signalling axis and osteoclast differentiation by negatively regulating TRAF6 expression

AUTHORS

Jun Li, Jia J. Wei, Cen H. Wu, Tao Zou, Hong Zhao, Tian Q. Huo, Cheng J. Wei, Ting Yang

ABSTRACT

Background

Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The aim of our study was to investigate the effects of EA on osteoclastogenesis and bone resorption to explore the corresponding signalling pathways.

Methods

Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively.

Results

After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed.

Conclusions

The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.

Retrospective Characterization of Bone Histomorphometric Findings in Clinical Patient Specimens

AUTHORS

Linnea Sellman, Xiaoyu Tong, Inari S Burton, Heikki Kröger

ABSTRACT

Background

Bone histomorphometry provides comprehensive information on bone metabolism and microstructure. In this retrospective study, we aimed to obtain an overview of the typical indications, referring hospitals, and histomorphometric quantification-based diagnoses of the bone tissue in our histomorphometry laboratory, the only laboratory in Finland carrying out histomorphometric examination of clinical bone biopsies.

Methods

Between January 1, 2005 and December 31, 2020, 553 clinical bone biopsies were sent to our histomorphometry laboratory for histomorphometric examination. The median age of the patients was 55 years (range, 0.2–89.9 years), 51% of them were males, and 18% comprised pediatric patients. We received bone biopsy specimens from 23 hospitals or healthcare units. The majority of the samples we sent by nephrologists.

Results

The most common bone biopsy indications were suspicion of renal osteodystrophy (ROD), unknown bone turnover status in osteoporosis, and several or untypical fractures. The most common quantitative bone histomorphometry-based diagnosis was ROD.

Conclusions

This study provides information on the clinical application of bone histomorphometry in Finland. Precise and quantitative ROD evaluation is the most common indication for bone histomorphometry, being crucial in clinical decision-making and targeted treatment of this patient group.

Anemoside B4 attenuates RANKL-induced osteoclastogenesis by upregulating Nrf2 and dampens ovariectomy-induced bone loss

AUTHORS

Zhen Cao, Xuben Niu, Maihuan Wang, Siwang Yu, Mingkun Wang, Silong Mu, Chuan Liu, Yaxi Wang

ABSTRACT

Increased numbers and functional overactivity of osteoclasts are the pathological basis for bone loss diseases such as osteoporosis, which are characterized by cortical bone thinning, decreased trabecular bone quantity, and reduced bone mineral density. Effective inhibition of osteoclast formation and bone resorption are important means of treating such skeletal diseases. Anemoside B4 (AB4), the main active component of Pulsatilla chinensis, possesses a wide range of anti-inflammatory and immunoregulatory effects. However, its effect and mechanism in osteoclast differentiation remain unclear. In this study, we found through tartrate-resistant acidic phosphatase (TRAcP) staining and immunofluorescence staining that AB4 inhibited the differentiation, fusion, and bone-resorption functions of osteoclasts induced by receptor activator of nuclear factor κB ligand (RANKL) in vitro. Additionally, real time PCR (RT-qPCR) and western blot analysis showed AB4 downregulated the expression of osteoclast marker genes, including Nfatc1, Fos, and Ctsk, while upregulating Nrf2 expression. AB4 (5 mg/kg) alleviated bone loss in ovariectomized mice by inhibiting osteoclast formation. Furthermore, the knockout of Nrf2 weakened the inhibitory effects of AB4 on osteoclast formation and related gene expression. In summary, the results suggest AB4 can inhibit osteoclast differentiation and function by activating Nrf2 and indicate AB4 may be a candidate drug for osteoporosis.

The synergistic treatment of cyclolinopeptide J and calcium carbonate nanoparticles for osteoporosis via BMP/Wnt signaling: In vivo and in vitro

AUTHORS

Jiazi Chen, Wen Li, Yee-Ying Lee, Zizhe Cai, Jing Chen, Yong Wang

ABSTRACT

This research focuses on the investigation of cyclolinopeptide J (CLJ), a bioactive peptide naturally present in flaxseed, which loaded in porous calcium carbonate (CA) nanoparticles (JCA) to augment the effectiveness of CLJ on osteogenesis. The JCA was successfully synthesized with a high loading capacity (47.8 %) and encapsulation efficiency (95.6 %). Results showed that CLJ exerted an excellent osteogenic effect at 10 µM in MC3T3-E1 cells. CLJ and CA have been shown to activate osteogenic factors by modulating the Wnt/β-catenin and BMP/Smad signaling pathways. Furthermore, JCA treatment exhibited a remarkable ability to restore the intricate trabecular characteristics of bone in OVX-induced mice. The trabecular bone architecture observed in JCA-treated mice closely resembled that of healthy controls, indicating a substantial amelioration of osteoporotic bone loss. Our findings highlight the synergistic treatment of CLJ and CA in restoring bone integrity and structure and provide compelling evidence for the effectiveness of this novel functional supplement.

Inhibition of KIF11 ameliorates osteoclastogenesis via regulating mTORC1-mediated NF-κB signaling

AUTHORS

Jiansen Miao, Hanbing Yao, Jian Liu, Zhixian Huang, Chengge Shi, Xinyu Lu, Junchen Jiang, Rufeng Ren, Chenyu Wang, Youjin Pan, Te Wang, Haiming Jin

ABSTRACT

Osteoporosis, characterized by over-production and activation of osteoclasts, has become a major health problem especially in elderly women. In our study, we first tested the effect of Caudatin (Cau) in osteoclastogenesis, which is separated from Cynanchum auriculatum as a species of C-21 steroidal glyosides. The results indicated that Cau suppressed osteoclastogenesis in a time- and dose-dependent manner in vitro. Mechanistically, Cau was identified to inhibit NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity. In vivo, by establishing an ovariectomized (OVX) mouse model to mimic osteoporosis, we confirmed that Cau treatment prevented OVX-induced bone loss in mice. In conclusion, we demonstrated that Cau inhibited NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity to suppress osteoclast differentiation in vitro as well as OVX-induced bone loss in vivo. This provides the possibility of a novel prospective drug for osteoporosis remedies.