bone metabolism

Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts

AUTHORS

Pei Ying Ng, Amy B. P. Ribet, Qiang Guo, Benjamin H. Mullin, Jamie W. Y. Tan, Euphemie Landao-Bassonga, Sébastien Stephens, Kai Chen, Jinbo Yuan, Laila Abudulai, Maike Bollen, Edward T. T. T. Nguyen, Jasreen Kular, John M. Papadimitriou, Kent Søe, Rohan D. Teasdale, Jiake Xu, Robert G. Parton, Hiroshi Takayanagi & Nathan J. Pavlos

ABSTRACT

Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast’s ‘resorptive apparatus’. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast’s unique secretory organelle and a potential therapeutic target for metabolic bone diseases.

Apoptotic Vesicles Regulate Bone Metabolism via the miR1324/SNX14/SMAD1/5 Signaling Axis

AUTHORS

Yuan Zhu, Kunkun Yang, Yawen Cheng, Yaoshan Liu, Ranli Gu, Xuenan Liu, Hao Liu, Xiao Zhang, Yunsong Liu

ABSTRACT

Mesenchymal stem cells (MSCs) are widely used in the treatment of diseases. After their in vivo application, MSCs undergo apoptosis and release apoptotic vesicles (apoVs). This study investigates the role of apoVs derived from human bone marrow mesenchymal stem cells (hBMMSCs) in bone metabolism and the molecular mechanism of the observed effects. The results show that apoVs can promote osteogenesis and inhibit osteoclast formation in vitro and in vivo. ApoVs may therefore attenuate the bone loss caused by primary and secondary osteoporosis and stimulate bone regeneration in areas of bone defect. The mechanisms responsible for apoV-induced bone regeneration include the release of miR1324, which inhibit expression of the target gene Sorting Nexin 14 (SNX14) and thus activate the SMAD1/5 pathway in target cells. Given that MSC-derived apoVs are easily obtained and stored, with low risks of immunological rejection and neoplastic transformation, The findings suggest a novel therapeutic strategy to treat bone loss, including via cell-free approaches to bone tissue engineering.