Quantitative Histologic Evidence of Amifostine Induced Cytoprotection in an Irradiated Murine Model of Mandibular Distraction Osteogenesis

Authors

Tchanque-Fossuo, Catherine N. MD, MS; Donneys, Alexis MD, MS; Razdolsky, Elizabeth R. BS; Monson, Laura; Farberg, Aaron S. BS; Deshpande, Sagar S. BS; Sarhaddi, Deniz BA; Poushanchi, Behdod BS; Goldstein, Steven A. PhD; Buchman, Steven R. MD

Abstract

Head and neck cancer (HNC) management requires adjuvant radiation therapy (XRT). The authors have previously demonstrated the damaging effect of a human equivalent dose of radiation (HEDR) on a murine mandibular model of distraction osteogenesis (DO). Utilizing quantitative histomorphometry (QHM), our specific aim is to objectively measure the radio-protective effects of Amifostine (AMF) on the cellular integrity and tissue quality of an irradiated and distracted regenerate. Sprague Dawley rats were randomly assigned into 2 groups: XRT/DO and AMF/XRT/DO, which received AMF prior to XRT. Both groups were given HEDR in 5 fractionated doses and underwent a left mandibular osteotomy with bilateral fixator placement. Distraction to 5.1mm was followed by a 28-day consolidation period. Left hemimandibles were harvested. QHM was performed for osteocyte count (Oc), empty lacunae (EL), Bone Volume/Tissue Volume (BV/TV) and Osteoid Volume/Tissue Volume (OV/TV) ratios. AMF/XRT/DO exhibited bony bridging as opposed to XRT/DO fibrous unions. QHM analysis revealed statistically significant higher Oc and BV/TV ratio in AMF-treated mandibles compared with irradiated mandibles. There was a corresponding decrease in EL and the ratio of OV/TV between AMF/XRT/DO and XRT/DO. We have successfully established the significant osseous cytoprotective and histoprotective capacity of AMF on DO in the face of XRT. AMF-sparing effect on bone cellularity correlated with an increase in bony union and elimination of fibrous union. We posit that the demonstration of similar efficacy of AMF in the clinic may allow the successful implementation of DO as a viable reconstructive option for HNC in the future.

Link to Article

http://dx.doi.org/10.1097/PRS.0b013e31826d2201