Epithelial 11β-hydroxysteroid dehydrogenase type II deletion inhibits Apc+/min mouse tumorigenesis via COX-2 pathway inhibition and induction of G1 cell cycle arrest

Authors

Li Jiang, Shilin Yang, Huiyong Yin, Xiaofeng Fan, Suwan Wang, Bing Yao, Ambra Pozzi, Xiaoping Chen, Raymond C. Harris, and Ming-Zhi Zhang

Abstract

Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) promotes colorectal tumorigenesis. Glucocorticoids are endogenous and potent COX-2 inhibitors, and their local actions are down-regulated by 11beta-hydroxysteroid dehydrogenase type II (11ßbetaHSD2)-mediated metabolism. We previously reported that 11betaHSD2 increased in human colonic and Apc+/min mouse intestinal adenomas and correlated with increased COX-2 expression and activity, and 11betaHSD2 inhibition suppressed the COX-2 pathway and decreased tumorigenesis. 11betaHSD2 is expressed in Apc+/min mouse intestinal adenoma stromal and epithelial cells. We generated Apc+/min mice with selective deletion of 11betaHSD2 in intestinal epithelial cells (Vil-HSD2-/- Apc+/min). 11betaHSD2 deletion in intestinal epithelia led to marked inhibition of Apc+/min mouse intestinal tumorigenesis. Immunostaining indicated decreased 11ßHSD2 and COX-2 expression in adenoma epithelia, while stromal COX-2 expression was intact in Vil-HSD2-/- Apc+/min mice. In Vil-HSD2-/- Apc+/min mouse intestinal adenomas, both p53 and p21 mRNA and protein levels were increased, with concomitant decrease in phosphorylation of retinoblastoma protein, indicating glucocorticoid-mediated G1 cell cycle arrest. Regulated in development and DNA damage responses 1 (REDD1), a novel stress-induced gene that inhibits mammalian target of rapamycin (mTOR) signaling pathway, was increased, while the mTOR signaling pathway was inhibited. Therefore, in Vil-HSD2-/- Apc+/min mice, epithelial cell 11betaHSD2 deficiency leads to inhibition of adenoma initiation and growth by attenuation of COX-2 expression, increased G1 cell cycle arrest and inhibition of mTOR signaling as a result of increased tumor intracellular active glucocorticoids. 11betaHSD2 inhibition may represent a novel approach for colorectal cancer chemoprevention by increasing tumor glucocorticoid activity, which in turn inhibits tumor growth by multiple pathways.

Link to Article

http://dx.doi.org/10.1158/1541-7786.MCR-13-0084-T