Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats

Authors

BaiLing Chen, YiQiang Li, DengHui Xie, XiaoXi Yang

Abstract

Osseointegration is vital to avoid long-time implants loosening after implantation surgery. This study investigated the effect of low-magnitude high-frequency (LMHF) loading via whole body vibration on bone-implant osseointegration in osteoporotic rats, and a comparison was made between LMHF vibration and alendronate on their effects. Thirty rats were ovariectomized to induce osteoporosis, and then treated with LMHF vibration (VIB) or alendronate (ALN) or a control treatment (OVX). Another 10 rats underwent sham operation to establish Sham control group. Prior to treatment, hydroxyapatite (HA)-coated titanium implants were inserted into proximal tibiae bilaterally. Both LMHF vibration and alendronate treatment lasted for 8 weeks. Histomorphometrical assess showed that both group VIB, ALN and Sham significantly increased bone-to-implant contact and peri-implant bone fraction (p < 0.05) when compared with group OVX. Nevertheless the bone-to-implant contact and peri-implant bone fraction of group VIB were inferior to group ALN and Sham (p < 0.05). Biomechanical tests also revealed similar results in maximum push out force and interfacial shear strength. Accordingly, it is concluded that LMHF loading via whole body vibration enhances bone-to-implant osseointegration in ovariectomized rats, but its effectiveness is weaker than alendronate.

Link to Article

http://dx.doi.org/10.1002/jor.22004