Experimental Study of the Effects of Hypoxia Simulator on Osteointegration of Titanium Prosthesis in Osteoporotic Rats

AUTHORS

Jiangfeng Liu, Huijun Kang, Jiangfeng Lu, Yike Dai, Fei Wang

ABSTRACT

Purpose: Poor osseointegration is the key reason for implant failure after arthroplasty, whether in osteoporotic or normal bone conditions. To date, osseointegration remains a major challenge. Recent studies have shown that deferoxamine(DFO) can accelerate osteogenesis by activation of the hypoxia signal pathway. The purpose of this study is to test the following hypothesis: after knee replacement, intra-articular injection of DFO will promote osteogenesis and osseointegration with titanium prosthesis in the bones of osteoporotic rats.

Materials and Methods: 90 female sprague-dawley rats were used for the experiment. Ovariectomy and knee arthroplasty were performed. Then, the rats were randomly divided into DFO and control group(n=40 per group). The two groups were treated by intraarticular injection of DFO and saline respectively. After 2 weeks, polymerase chain reaction(PCR) and immunohistochemistry were used to evaluate the levels of HIF-1a, VEGF and CD31. After 12 weeks, the specimens were examined by micro CT, biomechanics and histopathology to evaluate osteogenesis and osseointegration.

Results: The results of PCR showed mRNA levels of VEGF and CD31 in DFO group were significantly higher than those in control group. The immunohistochemistry results indicated positive cell expressions of HIF-1a, VEGF and CD31 in DFO group were also higher. Compared to control group, the microCT parameters of BMD, BV/TV, TB.N, TB.Th were significantly higher. The maximal pull-out force and the bone-to-implant contact (BIC) value were also higher .

Conclusions: The local administration of DFO which is used to activate HIF-1a signaling pathway can promote osteogenesis and osseointegration with the prosthesis in osteoporotic bone.

Three-dimensional-printed individualized porous implants: A new “implant-bone” interface fusion concept for large bone defect treatment

AUTHORS

Teng Zhang, Qingguang Wei, Hua Zhou, Zehao Jing, Xiaoguang Liu, Yufeng Zheng, Hong Cai, Feng Wei, Liang Jiang, Miao Yu, Yan Cheng, Daoyang Fan, Wenhao Zhou, Xinhong Lin, Huijie Leng, Jian Li, Xinyu Li, Caimei Wang, Yun Tian, Zhongjun Liu

ABSTRACT

Bone defect repairs are based on bone graft fusion or replacement. Current large bone defect treatments are inadequate and lack of reliable technology. Therefore, we aimed to investigate a simple technique using three-dimensional (3D)-printed individualized porous implants without any bone grafts, osteoinductive agents, or surface biofunctionalization to treat large bone defects, and systematically study its long-term therapeutic effects and osseointegration characteristics. Twenty-six patients with large bone defects caused by tumor, infection, or trauma received treatment with individualized porous implants; among them, three typical cases underwent a detailed study. Additionally, a large segmental femur defect sheep model was used to study the osseointegration characteristics. Immediate and long-term biomechanical stability was achieved, and the animal study revealed that the bone grew into the pores with gradual remodeling, resulting in a long-term mechanically stable implant-bone complex. Advantages of 3D-printed microporous implants for the repair of bone defects included 1) that the stabilization devices were immediately designed and constructed to achieve early postoperative mobility, and 2) that osseointegration between the host bone and implants was achieved without bone grafting. Our osseointegration method, in which the “implant-bone” interface fusion concept was used instead of “bone-bone” fusion, subverts the traditional idea of osseointegration.

The Effects of Photobiomodulation on Leukocyte and Platelet-Rich Fibrin as Barrier Membrane on Bone Regeneration: An Experimental Animal Study

AUTHORS

Seren Surmeli Baran, Andy Temmerman, Fariz Salimov, Onur Ucak Turer, Tugce Sapmaz, Mehmet Cenk Haytac, and Mustafa Ozcan

ABSTRACT

Objective: To compare the effects of leukocyte and platelet-rich fibrin (L-PRF) and photobiomodulation therapy (PBMT)-applied L-PRF (PBMT/L-PRF) as barrier membranes on new bone formation (BV/TV) for the treatment of critical-sized bone defects.

Materials and methods: The right iliac crests of five sheep were used in this experimental animal study. Eight critical-sized defects were surgically created in each sheep and a total of 40 defects were obtained. A deproteinized bovine bone graft was placed in all defects, and the defects were divided into four groups to be covered with L-PRF membrane, PBMT/L-PRF membrane, collagen membrane, or left uncovered as controls. Animals were sacrificed at 1 month. The sections obtained were histomorphometrically analyzed.

Results: The results showed that the collagen group presented significantly higher values for main bone healing parameters (BV/TV, bone volume, and bone surface; p < 0.05). The PBMT/L-PRF group presented higher values than the L-PRF group and controls for these parameters though not statistically significant (p > 0.05).

Conclusions: The findings show that PBMT may provide additional regenerative properties to L-PRF when used as barrier membranes. However, these results did not reach the collagen membranes, which warrants further studies for adapting the laser parameters to increase regenerative capacity of L-PRF.

Deletion of Ulk1 inhibits neointima formation by enhancing KAT2A/GCN5-mediated acetylation of TUBA/α-tubulin in vivo

AUTHORS

Changhan Ouyang, Jian Li, Xiaoxu Zheng, Jing Mu, Gloria Torres, Qilong Wang, Ming-Hui Zou & Zhonglin Xie

ABSTRACT

ULK1 (unc-51 like autophagy activating kinase) has a central role in initiating macroautophagy/autophagy, a process that contributes to atherosclerosis and neointima hyperplasia, or excessive tissue growth that leads to vessel dysfunction. However, the role of ULK1 in neointima formation remains unclear. We aimed to determine how Ulk1 deletion affected neointima formation and to investigate the underlying mechanisms. We measured autophagy activity, vascular smooth muscle cell (VSMC) migration and neointima hyperplasia in cultured VSMCs and ligation-injured mouse carotid arteries from male wild-type (WT, C57BL/6 J) and VSMC-specific ulk1 knockout (ulk1 KO) mice. Carotid artery ligation in WT mice increased ULK1 protein expression, and concurrently increased autophagic flux and neointima formation. Treating human aortic smooth muscle cells (HASMCs) with PDGF (platelet derived growth factor) increased ULK1 expression, activated autophagy, and promoted cell migration. Further, smooth muscle cell-specific deletion of Ulk1 suppressed autophagy, inhibited VSMC migration, and impeded neointima hyperplasia. Mechanistically, Ulk1 deletion inhibited autophagic degradation of histone acetyltransferase protein KAT2A/GCN5 (K[lysine] acetyltransferase 2A), resulting in accumulation of KAT2A that directly acetylated TUBA/α-tubulin and subsequently increased protein levels of acetylated TUBA. The acetylation of TUBA increased microtubule stability and inhibited VSMC directional migration and neointima formation. Finally, local transfection of Kat2a siRNA decreased TUBA acetylation and prevented the attenuation of vascular injury-induced neointima formation in ulk1 KO mice. These findings suggest that Ulk1 deletion inhibits neointima formation by reducing autophagic degradation of KAT2A and increasing TUBA acetylation in VSMCs.

Sestrin2 Regulates Osteoclastogenesis via the p62-TRAF6 Interaction

AUTHORS

Sue Young Oh, Namju Kang, Jung Yun Kang, Ki Woo Kim, Jong-Hoon Choi, Yu-Mi Yang1 and Dong Min Shin

ABSTRACT

The receptor activator of nuclear factor-kappa B ligand (RANKL) mediates osteoclast differentiation and functions by inducing Ca2+ oscillations, activating mitogen-activated protein kinases (MAPKs), and activating nuclear factor of activated T-cells type c1 (NFATc1) via the RANK and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) interaction. Reactive oxygen species (ROS) also plays an important role during osteoclastogenesis and Sestrin2, an antioxidant, maintains cellular homeostasis upon stress injury via regulation of ROS, autophagy, and inflammation. However, the role of Sestrin2 in osteoclastogenesis remains unknown. In this study, we investigated the role of Sestrin2 in the RANKL-RANK-TRAF6 signaling pathway during osteoclast differentiation. Deletion of Sestrin2 (Sesn2) increased bone mass and reduced the number of multinucleated osteoclasts on bone surfaces. RANKL-induced osteoclast differentiation and function decreased in Sesn2 knockout (KO) bone marrow-derived monocytes/macrophages (BMMs) due to inhibition of NFATc1 expression, but osteoblastogenesis was not affected. mRNA expression of RANKL-induced specific osteoclastogenic genes and MAPK protein expression were lower in Sesn2 KO BMMs than wild-type (WT) BMMs after RANKL treatment. However, the Sesn2 deletion did not affect ROS generation or intracellular Ca2+ oscillations during osteoclastogenesis. In contrast, the interaction between TRAF6 and p62 was reduced during osteoclasts differentiation in Sesn2 KO BMMs. The reduction in the TRAF6/p62 interaction and TRAP activity in osteoclastogenesis in Sesn2 KO BMMs was recovered to the WT level upon expression of Flag-Sesn2 in Sesn2 KO BMMs. These results suggest that Sestrin2 has a novel role in bone homeostasis and osteoclasts differentiation through regulation of NFATc1 and the TRAF6/p62 interaction.

The quality of etched enamel in different regions and tooth types and its significance in bonding and the development of white spot lesions

AUTHORS

Elisabeth C. Barnhart; Phillip M. Campbell; Amal Noureldin; Katie Julien; Peter H. Buschang

ABSTRACT

Objectives

To quantify differences in the etch quality of enamel within and between human teeth, which has not previously been attempted.

Materials and Methods

The buccal right and left halves of 27 extracted human teeth were randomly allocated to scanning electron microscopy (SEM) or micro–computed tomography (μCT) for evaluation. The buccal surfaces were pumiced, etched with 37% phosphoric acid gel etchant for 15 seconds, rinsed, and air dried. Each tooth was divided into three regions (incisal, middle, and cervical) and viewed after etching at 1200× magnification with SEM. The μCT scans were taken before and after etching to calculate apparent and material mineral densities.

Results

SEM showed greater aprismatic enamel and poorer etch quality (ie, significantly less percentage enamel) for the posterior than anterior teeth and for the cervical region than for the incisal and middle regions of all teeth. Although there were no density differences prior to etching, μCT demonstrated that etching increased material density significantly more for the anterior than posterior teeth. Prior to etching, the enamel in the cervical regions was significantly less dense than the enamel in the middle or incisal regions. Etching significantly increased the material density of all three regions, which decreased initial regional differences. After etching, the apparent density of the cervical region remained significantly lower than the densities of the other two regions.

Conclusions

Based on SEM and μCT, there is greater aprismatic enamel and inferior etch quality in the cervical regions of all tooth types and is clinically significant in explaining the failure of sealant retention and the propensity for white spot lesions.