Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation

AUTHORS

Zixue Jin, Jordan Kho, Brian Dawson, Ming-Ming Jiang, Yuqing Chen, Saima Ali, Lindsay C. Burrage, Monica Grover, Donna J. Palmer, Dustin L. Turner, Philip Ng, Sandesh C.S. Nagamani, and Brendan Lee

ABSTRACT

Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase–dependent (NOS-dependent) NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of caveolin 1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO/glycolysis pathway may be a new target to modulate bone anabolism.

Loss of Basal Forebrain Cholinergic Neurons Following Adolescent Binge Ethanol Exposure: Recovery With the Cholinesterase Inhibitor Galantamine

AUTHORS

Fulton T. Crews, Rachael Fisher, Chloe Deason and Ryan P. Vetreno

ABSTRACT

Binge drinking and alcohol abuse are common during adolescence and cause both cognitive deficits and lasting cholinergic pathology in the adult basal forebrain. Acetylcholine is anti-inflammatory and studies using the preclinical adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2 day on/2 day off from postnatal day [P]25 to P54) model of human adolescent binge drinking report decreased basal forebrain cholinergic neurons (BFCNs) and induction of proinflammatory genes that persist long into adulthood. Recent studies link AIE-induced neuroimmune activation to cholinergic pathology, but the underlying mechanisms contributing to the persistent loss of BFCNs are unknown. We report that treatment with the cholinesterase inhibitor galantamine (4.0 mg/kg, i.p.) administered during AIE (i.e., P25–P54) or following the conclusion of AIE (i.e., P57–P72) recovered the persistent loss of cholinergic neuron phenotype markers (i.e., ChAT, TrkA, and p75NTR) and somal shrinkage of residual ChAT + neurons known to persist in AIE-exposed adults. Galantamine treatment also recovered the AIE-increased expression of the proinflammatory receptors TLR4 and RAGE, the endogenous TLR4/RAGE agonist HMGB1, and the transcription activation marker pNF-κB p65. Interestingly, we find BFCNs express TLR4 and RAGE, and that AIE treatment increased pNF-κB p65 expression in adult ChAT + IR neurons, consistent with intracellular HMGB1-TLR4/RAGE signaling within BFCNs. AIE increased epigenetic transcription silencing markers (i.e., H3K9me2 and H3K9me3) in the adult basal forebrain and H3K9me2 occupancy at cholinergic phenotype gene promoters (i.e., ChAT and TrkA). The finding of no AIE-induced changes in total basal forebrain NeuN + neurons with galantamine reversal of AIE-induced ChAT + neuron loss, TLR4/RAGE-pNF-κB p65 signals, and epigenetic transcription silencing markers suggests that AIE does not cause cell death, but rather the loss of the cholinergic phenotype. Together, these data suggest that AIE induces HMGB1-TLR4/RAGE-pNF-κB p65 signals, causing the loss of cholinergic phenotype (i.e., ChAT, TrkA, and p75NTR) through epigenetic histone transcription silencing that result in the loss of the BFCN phenotype that can be prevented and restored by galantamine.

Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures

AUTHORS

Michael F. Almeida, Thuvan Piehler, Kelly E. Carstens, Meilan Zhao, Mahsa Samadi, Serena M. Dudek, Christopher J. Norton, Catherine M. Parisian, Karen L.G. Farizatto, Ben A. Bahr

ABSTRACT

Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.

AAV1.NT-3 gene therapy for X-linked Charcot–Marie–Tooth neuropathy type 1

AUTHORS

Burcak Ozes, Morgan Myers, Kyle Moss, Jennifer Mckinney, Alicia Ridgley, Lei Chen, Shasha Bai, Charles K. Abrams, Mona M. Freidin, Jerry R. Mendell & Zarife Sahenk

ABSTRACT

X-linked Charcot-Marie-Tooth neuropathy (CMTX) is caused by mutations in the gene encoding Gap Junction Protein Beta-1 (GJB1)/Connexin32 (Cx32) in Schwann cells. Neurotrophin-3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. Improvements in these parameters have been shown previously in a CMT1 model, TremblerJ mouse, with NT-3 gene transfer therapy. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 3-month-old Cx32 knockout (KO) mice. Measurable levels of NT-3 were found in the serum at 6-month post gene delivery. The outcome measures included functional, electrophysiological and histological assessments. At 9-months of age, NT-3 treated mice showed no functional decline with normalized compound muscle action potential amplitudes. Myelin thickness and nerve conduction velocity significantly improved compared with untreated cohort. A normalization toward age-matched wildtype histopathological parameters included increased number of Schmidt-Lanterman incisures, and muscle fiber diameter. Collectively, these findings suggest a translational application to CMTX1.

In Utero Maternal Benzene Exposure Predisposes to the Metabolic Imbalance in the Offspring

AUTHORS

Lisa Koshko, Lucas K Debarba, Mikaela Sacla, Juliana B M de Lima, Olesya Didyuk, Patrick Fakhoury, Marianna Sadagurski

ABSTRACT

Environmental chemicals play a significant role in the development of metabolic disorders, especially when exposure occurs early in life. We have recently demonstrated that benzene exposure, at concentrations relevant to cigarette smoke, induces a severe metabolic imbalance in a sex-specific manner affecting male but not female mice. However, the roles of benzene in the development of aberrant metabolic outcomes following gestational exposure, remain largely unexplored. In this study, we exposed pregnant C57BL/6JB dams to benzene at 50 ppm or filtered air for 6 h/day from gestational day 0.5 (GD0.5) through GD21 and studied male and female offspring metabolic phenotypes in their adult life. While no changes in body weight or body composition were observed between groups, 4-month-old male and female offspring exhibited reduced parameters of energy homeostasis (VO2, VCO2, and heat production). However, only male offspring from benzene-exposed dams were glucose intolerant and insulin resistant at this age. By 6 months of age, both male and female offspring exhibited marked glucose intolerance however, only male offspring developed severe insulin resistance. This effect was accompanied by elevated insulin secretion and increased beta-cell mass only in male offspring. In support, Homeostatic Model Assessment for Insulin Resistance, the index of insulin resistance was elevated only in male but not in female offspring. Regardless, both male and female offspring exhibited a considerable increase in hepatic gene expression associated with inflammation and endoplasmic reticulum stress. Thus, gestational benzene exposure can predispose offspring to increased susceptibility to the metabolic imbalance in adulthood with differential sensitivity between sexes.

Inhibition of endothelin-B receptor signaling synergizes with MAPK pathway inhibitors in BRAF mutated melanoma

AUTHORS

Alexander Schäfer, Benedicte Haenig, Julie Erupathil, Panja Strickner, Daniela Sabato, Richard W. D. Welford, Lhéanna Klaeylé, Elise Simon, Clemens Krepler, Patricia Brafford, Min Xiao, Meenhard Herlyn, Matthias Gstaiger, Francois Lehembre & Imke Renz

ABSTRACT

The clinical benefit of MAPK pathway inhibition in melanoma patients carrying BRAF mutations is temporal. After the initial response to treatment, the majority of tumors will develop resistance and patients will relapse. Here we demonstrate that the endothelin-endothelin receptor B (ETBR) signaling pathway confers resistance to MAPK pathway inhibitors in BRAF mutated melanoma. MAPK blockade, in addition to being anti-proliferative, induces a phenotypic change which is characterized by increased expression of melanocyte-specific genes including ETBR. In the presence of MAPK inhibitors, activation of ETBR by endothelin enables the sustained proliferation of melanoma cells. In mouse models of melanoma, including patient-derived xenograft models, concurrent inhibition of the MAPK pathway and ETBR signaling resulted in a more effective anti-tumor response compared to MAPK pathway inhibition alone. The combination treatment significantly reduced tumor growth and prolonged survival compared to therapies with MAPK pathway inhibitors alone. The phosphoproteomic analysis revealed that ETBR signaling did not induce resistance towards MAPK pathway inhibitors by restoring MAPK activity, but instead via multiple alternative signaling pathways downstream of the small G proteins GNAq/11. Together these data indicate that a combination of MAPK pathway inhibitors with ETBR antagonists could have a synergistically beneficial effect in melanoma patients with hyperactivated MAPK signaling pathways.