Calcium and vitamin D intake maintained from preovariectomy independently affect calcium metabolism and bone properties in Sprague Dawley rats

Authors

C. Y. Park, W. H. Lee, J. C. Fleet, M. R. Allen, G. P. McCabe, D. M. Walsh, C. M. Weaver

Abstract

Summary The interaction of habitual Ca and vitamin D intake from preovariectomy to 4 months postovariectomy on bone and Ca metabolism was assessed. Higher Ca intake suppressed net bone turnover, and both nutrients independently benefitted trabecular structure. Habitual intake of adequate Ca and ~50 nmol/L vitamin D status is most beneficial.

Introduction Dietary strategies to benefit bone are typically tested prior to or after menopause but not through menopause transition. We investigated the interaction of Ca and vitamin D status on Ca absorption, bone remodeling, Ca kinetics, and bone strength as rats transitioned through estrogen deficiency.

Methods Sprague Dawley rats were randomized at 8 weeks to 0.2 or 1.0 % Ca and 50, 100, or 1,000 IU (1.25, 2.5, or 25 μg) vitamin D/kg diet (2 × 3 factorial design) and ovariectomized at 12 weeks. Urinary 45Ca excretion from deep-labeled bone was used to assess net bone turnover weekly. Ca kinetics was performed between 25 and 28 weeks. Rats were killed at 29 weeks. Femoral and tibiae structure (by μCT), dynamic histomorphometry, and bone Ca content were assessed.

Results Mean 25(OH)D for rats on the 50, 100, 1,000 IU vitamin D/kg diet were 32, 54, and 175 nmol/L, respectively. Higher Ca intake ameliorated net bone turnover, reduced fractional Ca absorption and bone resorption, and increased net Ca absorption. Tibial and femoral trabecular structures were enhanced independently by higher Ca and vitamin D intake. Tibial bone width and fracture resistance were enhanced by higher vitamin D intake. Dynamic histomorphometry in the tibia was not affected by either nutrient. A Ca × vitamin D interaction existed in femur length, tibial Ca content, and mass of the soft tissue/extracellular fluid compartment.

Conclusions Adequate Ca intake and serum 25(OH)D level of 50 nmol/L provided the most benefit for bone health, mostly through independent effects of Ca and vitamin D.

Link To Article

http://dx.doi.org/10.1007/s00198-014-2709-2

Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site

Authors

Faleh Tamimi, Jesus Torres, Khadijeh Al-Abedalla, Enrique Lopez-Cabarcos, Mohammad H. Alkhraisat, David C. Bassett, Uwe Gburece, Jake E. Barralet

Abstract

Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography–computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays.

Link To Article

http://dx.doi.org/10.1016/j.biomaterials.2014.03.050

Anorganic bovine bone (ABB) vs. autologous bone (AB) plus ABB in maxillary sinus grafting. A prospective non-randomized clinical and histomorphometrical trial

Authors

Christian M. Schmitt, Tobias Moest, Rainer Lutz, Friedrich W. Neukam and Karl Andreas Schlegel

Abstract

Objectives This investigation focused on histological characteristics and 5-year implant survival after sinus floor augmentation with anorganic bovine bone (ABB, Bio-Oss®) and ABB plus autologous bone (AB) with a ratio of 1/1.

Material and methods Nineteen consecutive patients with bony atrophy of the posterior edentulous maxilla and a vertical bone height ≤4 mm were prospectively included in this study. In the first surgical stage, the maxillary sinus was non-randomized either augmented with ABB alone (n = 12) or a 1/1 mixture of ABB and AB (n = 7). After a mean healing period of 167 days, biopsies were harvested in the region of the grafted sinus with a trephine burr and implants were placed simultaneously, ABB n = 18 and ABB + AB n = 12. The samples were microradiographically and histomorphometrically analyzed judging the newly formed bone (bone volume, BV), residual bone substitute material volume (BSMV), and intertrabecular volume (soft tissue volume, ITV) in the region of the augmented maxillary sinus. Implant survival was retrospectively evaluated from patient's records.

Results No significant difference in residual bone substitute material (BSMV) in the ABB group (31.21 ± 7.74%) and the group with the mixture of ABB and AB (28.41 ± 8.43%) was histomorphologically determined. Concerning the de novo bone formation, also both groups showed statistically insignificant outcomes; ABB 26.02 ± 5.23% and ABB + AB 27.50 ± 6.31%. In all cases, implants were installed in the augmented sites with sufficient primary stability. After a mean time in function of 5 years and 2 months, implant survival was 93.75% in the ABB and 92.86% in the ABB + AB group with no statistically significant differences.

Conclusion The usage of ABB plus AB to a 1/1 ratio leads to an amount of newly formed bone comparable with the solitary use of ABB after grafting of the maxillary sinus. Considering that ABB is a non-resorbable bone substitute, it can be hypothesized that this leads to stable bone over time and long-term implant success. Importantly, in the sole use of ABB, bone grafting and therefore donor site morbidities can be avoided.

Link To Article

http://dx.doi.org/10.1111/clr.12396

Maximizing bone formation in posterior spine fusion using rhBMP-2 and zoledronic acid in wild type and NF1 deficient mice

Authors

Justin Bobyn, Anton Rasch, Mikulec Kathy, David G. Little, and Aaron Schindeler

Abstract

Spinal pseudarthrosis is a well described complication of spine fusion surgery in NF1 patients. Reduced bone formation and excessive resorption have been described in NF1 and anti-resorptive agents may be advantageous in these individuals. In this study, 16 wild type and 16 Nf1+/− mice were subjected to posterolateral fusion using collagen sponges containing 5 µg rhBMP-2 introduced bilaterally. Mice were dosed twice weekly with 0.02 mg/kg zoledronic acid (ZA) or sterile saline. The fusion mass was assessed for bone volume (BV) and bone mineral density (BMD) by microCT. Co-treatment using rhBMP-2 and ZA produced a significant increase (p < 0.01) in BV of the fusion mass compared to rhBMP-2 alone in both wild type mice (+229%) and Nf1+/− mice (+174%). Co-treatment also produced a significantly higher total BMD of the fusion mass compared to rhBMP-2 alone in both groups (p < 0.01). Despite these gains with anti-resorptive treatment, Nf1+/− deficient mice still generated less bone than wild type controls. TRAP staining on histological sections indicated an increased osteoclast surface/bone surface (Oc.S/BS) in Nf1+/− mice relative to wild type mice, and this was reduced with ZA treatment.

Link To Article

http://dx.doi.org/10.1002/jor.22628

Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis

Authors

Shane A Lloyd, Alayna E Loiselle, Yue Zhang and Henry J Donahue

Abstract

Background Connexin 43 (Cx43) is the predominant gap junction protein in bone. Mice with a bone-specific deletion of Cx43 (cKO) have an osteopenic cortical phenotype. In a recent study, we demonstrated that cKO mice are resistant to bone loss induced by hindlimb suspension (HLS), an animal model of skeletal unloading. This protective effect occurred primarily as a result of lower osteoclast-mediated bone resorption. Interestingly, we also documented a significant increase in cortical osteocyte apoptosis and reduced sclerostin production. In the present study, we investigated whether osteocytic osteolysis – bone resorption by osteocytes within lacunae – is induced by HLS and the potential effect of Cx43 deficiency on this process during unloading.

Methods 6-month-old male Cx43 cKO or wild-type (WT) mice were subjected to three weeks of HLS (Suspended) or normal loading conditions (Control) (n = 5/group). Lacunar morphology and tartrate-resistant acid phosphatase (TRACP) staining were assessed on sections of femur cortical bone. Experimental groups were compared via two-way ANOVA.

Results Empty lacunae were 26% larger in cKO-Control vs. WT-Control (p < 0.05), while there was no difference in the size of empty lacunae between Control and Suspended within WT or cKO (p > 0.05). Similarly, there was a trend (p = 0.06) for 11% larger lacunae containing viable osteocytes for cKO-Control vs. WT-Control, with no apparent effect of loading condition. There was no difference in the proportion of TRACP + cells between WT-Control and cKO-Control (p > 0.05); however, WT-Suspended mice had 246% more TRACP + osteocytes compared WT-Control mice (p < 0.05). There was no difference in TRACP staining between cKO-Control and cKO-Suspended (p > 0.05).

Conclusions Prior to undergoing apoptosis, osteocytes in cKO mice may be actively resorbing their respective lacunae via the process of osteocytic osteolysis. Interestingly, the proportion of TRACP + osteocytes increased dramatically following unloading of WT mice, an effect that was not observed in cKO mice subjected to HLS. The results of the present study provide initial evidence that osteocytic osteolysis is occurring in cortical bone in response to mechanical unloading. Furthermore, Cx43 deficiency appears to protect against osteocytic osteolysis in a manner similar to the inhibition of unloading-induced osteoclast activation that we have documented previously.

Link To Article

http://dx.doi.org/10.1186/1471-2474-15-122

Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: A mechanical and histologic analysis

Authors

Ryan N. Brown, Brent E. Sexton, Tien-Min Gabriel Chu,Thomas R. Katona, Kelton T. Stewart, Hee-Moon Kyung, Sean Shih-Yao Liu

Abstract

Introduction

The detailed mechanical and histologic properties of stainless steel miniscrew implants used for temporary orthodontic anchorage have not been assessed. Thus, the purpose of this study was to compare them with identically sized titanium alloy miniscrew implants.

Methods

Forty-eight stainless steel and 48 titanium alloy miniscrew implants were inserted into the tibias of 12 rabbits. Insertion torque and primary stability were recorded. One hundred grams of tensile force was applied between half of the implants in each group, resulting in 4 subgroups of 24 specimens each. Fluorochrome labeling was administered at weeks 4 and 5. When the rabbits were euthanized at 6 weeks, stability and removal torque were measured in half (ie, 12 specimens) of each of the 4 subgroups. Microdamage burden and bone-to-implant contact ratio were quantified in the other 12 specimens in each subgroup. Mixed model analysis of variance was used for statistical analysis.

Results

All implants were stable at insertion and after 6 weeks. The only significant difference was the higher (9%) insertion torque for stainless steel. No significant differences were found between stainless steel and titanium alloy miniscrew implants in microdamage burden and bone-to-implant contact regardless of loading status.

Conclusions

Stainless steel and titanium alloy miniscrew implants provide the same mechanical stability and similar histologic responses, suggesting that both are suitable for immediate orthodontic clinical loads.

Link To Article

http://dx.doi.org/10.1016/j.ajodo.2013.12.022