cancer

Stimulation of Host Bone Marrow Stromal Cells by Sympathetic Nerves Promotes Breast Cancer Bone Metastasis in Mice

Authors

J. Preston Campbell, Matthew R. Karolak, Yun Ma,Daniel S. Perrien, S. Kathryn Masood-Campbell, Niki L. Penner, Steve A. Munoz, Andries Zijlstra, Xiangli Yang, Julie A. Sterling, Florent Elefteriou

Abstract

Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the “vicious cycle” of bone destruction induced by these cells.

Link to Article

http://dx.doi.org/10.1371/journal.pbio.1001363

HGFK1 inhibits bone metastasis in breast cancer through the TAK1/p38 MAPK signaling pathway

Authors

Y Yao, Z-P Fang, H Chen, L Yue, D-l Min, L-N Tang, W-X Yu, H F Kung,M C Lin and Z Shen

Abstract

Breast cancer metastasis to bone represents a devastating complication of advanced breast cancer, frequently resulting in significant increases in morbidity and mortality. An understanding of the mechanisms that govern breast cancer metastasis at the molecular level should lead to more effective therapies. Recently, the kringle 1 domain of human hepatocyte growth factor (HGFK1) was identified as a candidate metastasis suppressor gene. Here, we investigated whether HGFK1 is a key regulator of breast cancer bone metastasis. Of the 193 human breast carcinoma tissue samples examined, HGFK1 expression was relative higher in 82 (42.4%) by western blot and in 84 (43.5%) by quantitative real-time PCR. The higher expression of HGFK1 was significantly associated with a better prognostic value (P<0.001) and inversely correlated with bone metastasis (P=0.003). The efficacy of adeno-associated virus carrying HGFK1 (AAV-HGFK1) in osteolytic bone metastasis was then evaluated using an in vivo bone metastasis model. AAV-HGFK1 significantly inhibited osteolytic bone metastasis and prolonged the survival of mice in this model (P<0.01). In vitro, HGFK1 expression resulted in significant anti-invasion effects, enhanced the phosphorylation of TAK1 (transforming growth factor-β-activated kinase 1), p38 MAPK (mitogen-activated protein kinase) and MAPKAPK2 (MAPK-activated protein kinase 2) and decreased the expression of receptor activator of nuclear factor-κB (RANK), which was abrogated by the p38 MAPK inhibitor SB203580. This study shows for the first time that HGFK1 significantly inhibits the metastasis of breast cancer to bone by activating the TAK1/p38 MAPK signaling pathway and inhibiting RANK expression. Thus, AAV-HGFK1 treatment represents a potential therapy for bone metastasis in breast cancer.

Link to Article

http://dx.doi.org/10.1038/cgt.2012.38

Primate Genome Gain and Loss: A Bone Dysplasia, Muscular Dystrophy, and Bone Cancer Syndrome Resulting from Mutated Retroviral-Derived MTAP Transcripts

Authors

Olga Camacho-Vanegas, Sandra Catalina Camacho, Jacob Till, Irene Miranda-Lorenzo, Esteban Terzo, Maria Celeste Ramirez, Vern Schramm, Grace Cordovano, Giles Watts, Sarju Mehta, Virginia Kimonis, Benjamin Hoch, Keith D. Philibert, Carsten A. Raabe, David F. Bishop, Marc J. Glucksman and John A. Martignetti

Abstract

Diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH) is an autosomal-dominant syndrome characterized by bone dysplasia, myopathy, and bone cancer. We previously mapped the DMS-MFH tumor-suppressing-gene locus to chromosomal region 9p21–22 but failed to identify mutations in known genes in this region. We now demonstrate that DMS-MFH results from mutations in the most proximal of three previously uncharacterized terminal exons of the gene encoding methylthioadenosine phosphorylase, MTAP. Intriguingly, two of these MTAP exons arose from early and independent retroviral-integration events in primate genomes at least 40 million years ago, and since then, their genomic integration has gained a functional role. MTAP is a ubiquitously expressed homotrimeric-subunit enzyme critical to polyamine metabolism and adenine and methionine salvage pathways and was believed to be encoded as a single transcript from the eight previously described exons. Six distinct retroviral-sequence-containing MTAP isoforms, each of which can physically interact with archetype MTAP, have been identified. The disease-causing mutations occur within one of these retroviral-derived exons and result in exon skipping and dysregulated alternative splicing of all MTAP isoforms. Our results identify a gene involved in the development of bone sarcoma, provide evidence of the primate-specific evolution of certain parts of an existing gene, and demonstrate that mutations in parts of this gene can result in human disease despite its relatively recent origin.

Link to Article

http://dx.doi.org/10.1016/j.ajhg.2012.02.024

Activation of β-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells

Authors

Xinhai Wan, Jie Liu, Jing-Fang Lu, Vassiliki Tzelepi, Jun Yang, Michael W. Starbuck, Lixia Diao, Jing Wang, Eleni Efstathiou, Elba S. Vazquez, Patricia Troncoso, Sankar N. Maity, and Nora M. Navone

Abstract

To study Wnt/β-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the β-catenin–androgen receptor (AR) interaction. We carried out β-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of β-catenin–mediated transcription), and sequenced the β-catenin gene in MDA prostate cancer 118a, MDA prostate cancer 118b, MDA prostate cancer 2b, and PC-3 prostate cancer cells. We knocked down β-catenin in AR-negative MDA prostate cancer 118b cells and carried out comparative gene-array analysis. We also immunohistochemically analyzed β-catenin and AR in 27 bone metastases of human CRPCs. β-Catenin nuclear accumulation and TOP-flash reporter activity were high in MDA prostate cancer 118b but not in MDA prostate cancer 2b or PC-3 cells. MDA prostate cancer 118a and MDA prostate cancer 118b cells carry a mutated β-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA prostate cancer 118b cells with downregulated β-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant β-catenin. Finally, we found nuclear localization of β-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher's exact test), suggesting that reduced AR expression enables Wnt/β-catenin signaling. We identified a previously unknown downstream target of β-catenin, HAS2, in prostate cancer, and found that high β-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone metastatic prostate cancer. These findings may guide physicians in managing these patients.

Link to Article

http://dx.doi.org/10.1158/1078-0432.CCR-11-2521

Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells

Authors

Paul Curtin, Helen Youm, Erdjan Salih

Abstract

One of the major limitations of studying cancer-bone metastasis has been the lack of an appropriate ex-vivo model which can be used under defined conditions that simulates closely the in vivo live bone microenvironment in response to cancer-bone interactions. We have developed and utilized a three-dimensional (3D) cancer-bone metastasis model using free-floating live mouse calvarial bone organs in the presence of cancer cells in a roller tube system. In such co-cultures under hypoxia and a specifically defined bone remodeling stage, viz., resorption system, cancer cells showed a remarkable affinity and specificity for the “endosteal side” of the bone where they colonize and proliferate. This was concurrent with differentiation of resident stem/progenitor cells to osteoclasts and bone resorption. In contrast, under bone formation conditions this model revealed different pathophysiology where the breast cancer cells continued to induce osteoclastic bone resorption whereas prostate cancer cells led to osteoblastic bone formation. The current 3D model was used to demonstrate its application to studies involving chemical and biochemical perturbations in the absence and presence of cancer cells and cellular responses. We describe proof-of-principle with examples of the broad versatility and multi-faceted application of this model that adds another dimension to the ongoing studies in the cancer-bone metastasis arena.

Link to Article

http://dx.doi.org/10.1016/j.biomaterials.2011.10.046

PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target

Authors

Jiarong Li, Andrew C. Karaplis, Dao C. Huang, Peter M. Siegel, Anne Camirand, Xian Fang Yang, William J. Muller and Richard Kremer

Abstract

Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention.

Link to Article

http://www.jci.org/articles/view/46134